Abstract:Sharing synthetic medical images is a promising alternative to sharing real images that can improve patient privacy and data security. To get good results, existing methods for medical image synthesis must be manually adjusted when they are applied to unseen data. To remove this manual burden, we introduce a Hyperparameter-Free distributed learning method for automatic medical image Synthesis, Sharing, and Segmentation called HyFree-S3. For three diverse segmentation settings (pelvic MRIs, lung X-rays, polyp photos), the use of HyFree-S3 results in improved performance over training only with site-specific data (in the majority of cases). The hyperparameter-free nature of the method should make data synthesis and sharing easier, potentially leading to an increase in the quantity of available data and consequently the quality of the models trained that may ultimately be applied in the clinic. Our code is available at https://github.com/AwesomeLemon/HyFree-S3
Abstract:Traditional approaches to neuroevolution often start from scratch. This becomes prohibitively expensive in terms of computational and data requirements when targeting modern, deep neural networks. Using a warm start could be highly advantageous, e.g., using previously trained networks, potentially from different sources. This moreover enables leveraging the benefits of transfer learning (in particular vastly reduced training effort). However, recombining trained networks is non-trivial because architectures and feature representations typically differ. Consequently, a straightforward exchange of layers tends to lead to a performance breakdown. We overcome this by matching the layers of parent networks based on their connectivity, identifying potential crossover points. To correct for differing feature representations between these layers we employ stitching, which merges the networks by introducing new layers at crossover points. To train the merged network, only stitching layers need to be considered. New networks can then be created by selecting a subnetwork by choosing which stitching layers to (not) use. Assessing their performance is efficient as only their evaluation on data is required. We experimentally show that our approach enables finding networks that represent novel trade-offs between performance and computational cost, with some even dominating the original networks.
Abstract:Deformable image registration (DIR) involves optimization of multiple conflicting objectives, however, not many existing DIR algorithms are multi-objective (MO). Further, while there has been progress in the design of deep learning algorithms for DIR, there is no work in the direction of MO DIR using deep learning. In this paper, we fill this gap by combining a recently proposed approach for MO training of neural networks with a well-known deep neural network for DIR and create a deep learning based MO DIR approach. We evaluate the proposed approach for DIR of pelvic magnetic resonance imaging (MRI) scans. We experimentally demonstrate that the proposed MO DIR approach -- providing multiple registration outputs for each patient that each correspond to a different trade-off between the objectives -- has additional desirable properties from a clinical use point-of-view as compared to providing a single DIR output. The experiments also show that the proposed MO DIR approach provides a better spread of DIR outputs across the entire trade-off front than simply training multiple neural networks with weights for each objective sampled from a grid of possible values.
Abstract:In the health domain, decisions are often based on different data modalities. Thus, when creating prediction models, multimodal fusion approaches that can extract and combine relevant features from different data modalities, can be highly beneficial. Furthermore, it is important to understand how each modality impacts the final prediction, especially in high-stake domains, so that these models can be used in a trustworthy and responsible manner. We propose MultiFIX: a new interpretability-focused multimodal data fusion pipeline that explicitly induces separate features from different data types that can subsequently be combined to make a final prediction. An end-to-end deep learning architecture is used to train a predictive model and extract representative features of each modality. Each part of the model is then explained using explainable artificial intelligence techniques. Attention maps are used to highlight important regions in image inputs. Inherently interpretable symbolic expressions, learned with GP-GOMEA, are used to describe the contribution of tabular inputs. The fusion of the extracted features to predict the target label is also replaced by a symbolic expression, learned with GP-GOMEA. Results on synthetic problems demonstrate the strengths and limitations of MultiFIX. Lastly, we apply MultiFIX to a publicly available dataset for the detection of malignant skin lesions.
Abstract:Bayesian networks model relationships between random variables under uncertainty and can be used to predict the likelihood of events and outcomes while incorporating observed evidence. From an eXplainable AI (XAI) perspective, such models are interesting as they tend to be compact. Moreover, captured relations can be directly inspected by domain experts. In practice, data is often real-valued. Unless assumptions of normality can be made, discretization is often required. The optimal discretization, however, depends on the relations modelled between the variables. This complicates learning Bayesian networks from data. For this reason, most literature focuses on learning conditional dependencies between sets of variables, called structure learning. In this work, we extend an existing state-of-the-art structure learning approach based on the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) to jointly learn variable discretizations. The proposed Discretized Bayesian Network GOMEA (DBN-GOMEA) obtains similar or better results than the current state-of-the-art when tasked to retrieve randomly generated ground-truth networks. Moreover, leveraging a key strength of evolutionary algorithms, we can straightforwardly perform DBN learning multi-objectively. We show how this enables incorporating expert knowledge in a uniquely insightful fashion, finding multiple DBNs that trade-off complexity, accuracy, and the difference with a pre-determined expert network.
Abstract:For many real-world optimization problems it is possible to perform partial evaluations, meaning that the impact of changing a few variables on a solution's fitness can be computed very efficiently. It has been shown that such partial evaluations can be excellently leveraged by the Real-Valued GOMEA (RV-GOMEA) that uses a linkage model to capture dependencies between problem variables. Recently, conditional linkage models were introduced for RV-GOMEA, expanding its state-of-the-art performance even to problems with overlapping dependencies. However, that work assumed that the dependency structure is known a priori. Fitness-based linkage learning techniques have previously been used to detect dependencies during optimization, but only for non-conditional linkage models. In this work, we combine fitness-based linkage learning and conditional linkage modelling in RV-GOMEA. In addition, we propose a new way to model overlapping dependencies in conditional linkage models to maximize the joint sampling of fully interdependent groups of variables. We compare the resulting novel variant of RV-GOMEA to other variants of RV-GOMEA and VkD-CMA on 12 problems with varying degree of overlapping dependencies. We find that the new RV-GOMEA not only performs best on most problems, also the overhead of learning the conditional linkage models during optimization is often negligible.
Abstract:Deploying machine learning models into sensitive domains in our society requires these models to be explainable. Genetic Programming (GP) can offer a way to evolve inherently interpretable expressions. GP-GOMEA is a form of GP that has been found particularly effective at evolving expressions that are accurate yet of limited size and, thus, promote interpretability. Despite this strength, a limitation of GP-GOMEA is template-based. This negatively affects its scalability regarding the arity of operators that can be used, since with increasing operator arity, an increasingly large part of the template tends to go unused. In this paper, we therefore propose two enhancements to GP-GOMEA: (i) semantic subtree inheritance, which performs additional variation steps that consider the semantic context of a subtree, and (ii) greedy child selection, which explicitly considers parts of the template that in standard GP-GOMEA remain unused. We compare different versions of GP-GOMEA regarding search enhancements on a set of continuous and discontinuous regression problems, with varying tree depths and operator sets. Experimental results show that both proposed search enhancements have a generally positive impact on the performance of GP-GOMEA, especially when the set of operators to choose from is large and contains higher-arity operators.
Abstract:The transformation model is an essential component of any deformable image registration approach. It provides a representation of physical deformations between images, thereby defining the range and realism of registrations that can be found. Two types of transformation models have emerged as popular choices: B-spline models and mesh models. Although both models have been investigated in detail, a direct comparison has not yet been made, since the models are optimized using very different optimization methods in practice. B-spline models are predominantly optimized using gradient-descent methods, while mesh models are typically optimized using finite-element method solvers or evolutionary algorithms. Multi-objective optimization methods, which aim to find a diverse set of high-quality trade-off registrations, are increasingly acknowledged to be important in deformable image registration. Since these methods search for a diverse set of registrations, they can provide a more complete picture of the capabilities of different transformation models, making them suitable for a comparison of models. In this work, we conduct the first direct comparison between B-spline and mesh transformation models, by optimizing both models with the same state-of-the-art multi-objective optimization method, the Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA). The combination with B-spline transformation models, moreover, is novel. We experimentally compare both models on two different registration problems that are both based on pelvic CT scans of cervical cancer patients, featuring large deformations. Our results, on three cervical cancer patients, indicate that the choice of transformation model can have a profound impact on the diversity and quality of achieved registration outcomes.
Abstract:In this work, we show that simultaneously training and mixing neural networks is a promising way to conduct Neural Architecture Search (NAS). For hyperparameter optimization, reusing the partially trained weights allows for efficient search, as was previously demonstrated by the Population Based Training (PBT) algorithm. We propose PBT-NAS, an adaptation of PBT to NAS where architectures are improved during training by replacing poorly-performing networks in a population with the result of mixing well-performing ones and inheriting the weights using the shrink-perturb technique. After PBT-NAS terminates, the created networks can be directly used without retraining. PBT-NAS is highly parallelizable and effective: on challenging tasks (image generation and reinforcement learning) PBT-NAS achieves superior performance compared to baselines (random search and mutation-based PBT).
Abstract:Population Based Training (PBT) is an efficient hyperparameter optimization algorithm. PBT is a single-objective algorithm, but many real-world hyperparameter optimization problems involve two or more conflicting objectives. In this work, we therefore introduce a multi-objective version of PBT, MO-PBT. Our experiments on diverse multi-objective hyperparameter optimization problems (Precision/Recall, Accuracy/Fairness, Accuracy/Adversarial Robustness) show that MO-PBT outperforms random search, single-objective PBT, and the state-of-the-art multi-objective hyperparameter optimization algorithm MO-ASHA.