Abstract:Large Language Models (LLMs) can generate texts that carry the risk of various misuses, including plagiarism, planting fake reviews on e-commerce platforms, or creating fake social media postings that can sway election results. Detecting whether a text is machine-generated has thus become increasingly important. While machine-learning-based detection strategies exhibit superior performance, they often lack generalizability, limiting their practicality. In this work, we introduce GPT Paternity Test (GPT-Pat), which reliably detects machine-generated text across varied datasets. Given a text under scrutiny, we leverage ChatGPT to generate a corresponding question and provide a re-answer to the question. By comparing the similarity between the original text and the generated re-answered text, it can be determined whether the text is machine-generated. GPT-Pat consists of a Siamese network to compute the similarity between the original text and the generated re-answered text and a binary classifier. Our method achieved an average accuracy of 94.57% on four generalization test sets, surpassing the state-of-the-art RoBERTa-based method by 12.34%. The accuracy drop of our method is only about half of that of the RoBERTa-based method when it is attacked by re-translation and polishing.