Abstract:Free-space optical communication (FSO) can achieve fast, secure and license-free communication without need for physical cables, making it a cost-effective, energy-efficient and flexible solution when the fiber connection is absent. To establish FSO connection on-demand, it is essential to build portable FSO devices with compact structure and light weight. Here, we develop a miniaturized FSO system and realize 9.16 Gbps FSO between two nodes that is 1 km apart, using a commercial fiber-coupled optical transceiver module with no optical amplification. Basing on the home-made compact 90 mm-diameter acquisition, pointing and tracking (APT) system with four-stage close-loop feedback, the link tracking error is controlled at 3 {\mu}rad and results an average coupling loss of 13.7 dB. Such loss is within the tolerance of the commercial optical communication modules, and without the need of optical amplifiers, which contributes to the low system weight and power consumption. As a result, a single FSO device weighs only about 12 kg, making it compact and portable for potential application in high-speed wireless communication. Our FSO link has been tested up to 4 km, with link loss of 18 dB in the foggy weather in Nanjing, that shows longer distances can be covered with optical amplification.
Abstract:This work demonstrates a computational method for predicting the light propagation through a single multimode fiber using a deep neural network. The experiment for gathering training and testing data is performed with a digital micro-mirror device that enables the spatial light modulation. The modulated patterns on the device and the captured intensity-only images by the camera form the aligned data pairs. This sufficiently-trained deep neural network frame has very excellent performance for directly inferring the intensity-only output delivered though a multimode fiber. The model is validated by three standards: the mean squared error (MSE), the correlation coefficient (corr) and the structural similarity index (SSIM).
Abstract:Multimode fibres (MMF) are remarkable high-capacity information channels owing to the large number of transmitting fibre modes, and have recently attracted significant renewed interest in applications such as optical communication, imaging, and optical trapping. At the same time, the optical transmitting modes inside MMFs are highly sensitive to external perturbations and environmental changes, resulting in MMF transmission channels being highly variable and random. This largely limits the practical application of MMFs and hinders the full exploitation of their information capacity. Despite great research efforts made to overcome the high variability and randomness inside MMFs, any geometric change to the MMF leads to completely different transmission matrices, which unavoidably fails at the information recovery. Here, we show the successful binary image transmission using deep learning through a single MMF, which is stationary or subject to dynamic shape variations. We found that a single convolutional neural network has excellent generalisation capability with various MMF transmission states. This deep neural network can be trained by multiple MMF transmission states to accurately predict unknown information at the other end of the MMF at any of these states, without knowing which state is present. Our results demonstrate that deep learning is a promising solution to address the variability and randomness challenge of MMF based information channels. This deep-learning approach is the starting point of developing future high-capacity MMF optical systems and devices, and is applicable to optical systems concerning other diffusing media.