Abstract:The limited imaging performance of low-density objects in a zone plate based nano-resolution hard X-ray computed tomography (CT) system can be significantly improved by accessing the phase information. To do so, a grating-based Lau interferometer needs to be integrated. However, the nano-resolution phase contrast CT, denoted as nPCT, reconstructed from such an interferometer system may suffer resolution loss due to the strong signal diffraction. Aimed at performing accurate nPCT image reconstruction directly from these diffracted projections, a new model-driven nPCT image reconstruction algorithm is developed. First, the diffraction procedure is mathematically modeled into a matrix B, from which the projections without signal splitting can be generated invertedly. Second, a penalized weighed least-square model with total variation (PWLS-TV) is employed to denoise these projections. Finally, nPCT images with high resolution and high accuracy are reconstructed using the filtered-back-projection (FBP) method. Numerical simulations demonstrate that this algorithm is able to deal with diffracted projections having any splitting distances. Interestingly, results reveal that nPCT images with higher signal-to-noise-ratio (SNR) can be reconstructed from projections with larger signal splittings. In conclusion, a novel model-driven nPCT image reconstruction algorithm with high accuracy and robustness is verified for the Lau interferometer based hard X-ray nPCT imaging system.
Abstract:Objective: Quantitative technique based on In-line phase-contrast computed tomography with single scanning attracts more attention in application due to the flexibility of the implementation. However, the quantitative results usually suffer from artifacts and noise, since the phase retrieval and reconstruction are independent ("two-steps") without feedback from the original data. Our goal is to develop a method for material quantitative imaging based on a priori information specifically for the single-scanning data. Method: An iterative method that directly reconstructs the refractive index decrement delta and imaginary beta of the object from observed data ("one-step") within single object-to-detector distance (ODD) scanning. Simultaneously, high-quality quantitative reconstruction results are obtained by using a linear approximation that achieves material decomposition in the iterative process. Results: By comparing the equivalent atomic number of the material decomposition results in experiments, the accuracy of the proposed method is greater than 97.2%. Conclusion: The quantitative reconstruction and decomposition results are effectively improved, and there are feedback and corrections during the iteration, which effectively reduce the impact of noise and errors. Significance: This algorithm has the potential for quantitative imaging research, especially for imaging live samples and human breast preclinical studies.