Abstract:Debugging is one of the most time-consuming and expensive tasks in software development. Several formula-based fault localization (FBFL) methods have been proposed, but they fail to guarantee a set of diagnoses across all failing tests or may produce redundant diagnoses that are not subset-minimal, particularly for programs with multiple faults. This paper introduces a novel fault localization approach for C programs with multiple faults. CFaults leverages Model-Based Diagnosis (MBD) with multiple observations and aggregates all failing test cases into a unified MaxSAT formula. Consequently, our method guarantees consistency across observations and simplifies the fault localization procedure. Experimental results on two benchmark sets of C programs, TCAS and C-Pack-IPAs, show that CFaults is faster than other FBFL approaches like BugAssist and SNIPER. Moreover, CFaults only generates subset-minimal diagnoses of faulty statements, whereas the other approaches tend to enumerate redundant diagnoses.
Abstract:Automated program analysis is a pivotal research domain in many areas of Computer Science -- Formal Methods and Artificial Intelligence, in particular. Due to the undecidability of the problem of program equivalence, comparing two programs is highly challenging. Typically, in order to compare two programs, a relation between both programs' sets of variables is required. Thus, mapping variables between two programs is useful for a panoply of tasks such as program equivalence, program analysis, program repair, and clone detection. In this work, we propose using graph neural networks (GNNs) to map the set of variables between two programs based on both programs' abstract syntax trees (ASTs). To demonstrate the strength of variable mappings, we present three use-cases of these mappings on the task of program repair to fix well-studied and recurrent bugs among novice programmers in introductory programming assignments (IPAs). Experimental results on a dataset of 4166 pairs of incorrect/correct programs show that our approach correctly maps 83% of the evaluation dataset. Moreover, our experiments show that the current state-of-the-art on program repair, greatly dependent on the programs' structure, can only repair about 72% of the incorrect programs. In contrast, our approach, which is solely based on variable mappings, can repair around 88.5%.
Abstract:It has been shown that Maximum Satisfiability (MaxSAT) problem instances can be effectively solved by partitioning the set of soft clauses into several disjoint sets. The partitioning methods can be based on clause weights (e.g., stratification) or based on graph representations of the formula. Afterwards, a merge procedure is applied to guarantee that an optimal solution is found. This paper proposes a new framework called UpMax that decouples the partitioning procedure from the MaxSAT solving algorithms. As a result, new partitioning procedures can be defined independently of the MaxSAT algorithm to be used. Moreover, this decoupling also allows users that build new MaxSAT formulas to propose partition schemes based on knowledge of the problem to be solved. We illustrate this approach using several problems and show that partitioning has a large impact on the performance of unsatisfiability-based MaxSAT algorithms.
Abstract:Due to the vast number of students enrolled in Massive Open Online Courses (MOOCs), there has been an increasing number of automated program repair techniques focused on introductory programming assignments (IPAs). Such state-of-the-art techniques use program clustering to take advantage of previous correct student implementations to repair a given new incorrect submission. Usually, these repair techniques use clustering methods since analyzing all available correct student submissions to repair a program is not feasible. The clustering methods use program representations based on several features such as abstract syntax tree (AST), syntax, control flow, and data flow. However, these features are sometimes brittle when representing semantically similar programs. This paper proposes InvAASTCluster, a novel approach for program clustering that takes advantage of dynamically generated program invariants observed over several program executions to cluster semantically equivalent IPAs. Our main objective is to find a more suitable representation of programs using a combination of the program's semantics, through its invariants, and its structure, through its anonymized abstract syntax tree. The evaluation of InvAASTCluster shows that the proposed program representation outperforms syntax-based representations when clustering a set of different correct IPAs. Furthermore, we integrate InvAASTCluster into a state-of-the-art clustering-based program repair tool and evaluate it on a set of IPAs. Our results show that InvAASTCluster advances the current state-of-the-art when used by clustering-based program repair tools by repairing a larger number of students' programs in a shorter amount of time.
Abstract:Due to the vast number of students enrolled in Massive Open Online Courses (MOOCs), there has been an increasing number of automated program repair techniques focused on introductory programming assignments (IPAs). Such techniques take advantage of previous correct student implementations in order to provide automated, comprehensive, and personalized feedback to students. This paper presents C-Pack-IPAs, a publicly available benchmark of students' programs submitted for 25 different IPAs. C-Pack-IPAs contains semantically correct, semantically incorrect, and syntactically incorrect programs plus a test suite for each IPA. Hence, C-Pack-IPAs can be used to help evaluate the development of novel semantic, as well as syntactic, automated program repair frameworks, focused on providing feedback to novice programmers.