Abstract:In this article, we consider an industrial internet of things (IIoT) network supporting multi-device dynamic ultra-reliable low-latency communication (URLLC) while the channel state information (CSI) is imperfect. A joint link adaptation (LA) and device scheduling (including the order) design is provided, aiming at maximizing the total transmission rate under strict block error rate (BLER) constraints. In particular, a Bayesian optimization (BO) driven Twin Delayed Deep Deterministic Policy Gradient (TD3) method is proposed, which determines the device served order sequence and the corresponding modulation and coding scheme (MCS) adaptively based on the imperfect CSI. Note that the imperfection of CSI, error sample imbalance in URLLC networks, as well as the parameter sensitivity nature of the TD3 algorithm likely diminish the algorithm's convergence speed and reliability. To address such an issue, we proposed a BO based training mechanism for the convergence speed improvement, which provides a more reliable learning direction and sample selection method to track the imbalance sample problem. Via extensive simulations, we show that the proposed algorithm achieves faster convergence and higher sum-rate performance compared to existing solutions.
Abstract:Federated learning (FL) has been considered a promising privacy preserving distributed edge learning framework. Over-the-air computation (AirComp) technique leveraging analog transmission enables the aggregation of local updates directly over-the-air by exploiting the superposition properties of wireless multiple-access channel, thereby drastically reducing the communication bottleneck issues of FL compared with digital transmission schemes. This work points out that existing AirComp-FL overlooks a key practical constraint, the instantaneous peak-power constraints imposed by the non-linearity of radiofrequency power amplifiers. We present and analyze the effect of the classic method to deal with this issue, amplitude clipping combined with filtering. We investigate the effect of instantaneous peak-power constraints in AirComp-FL for both single-carrier and multi-carrier orthogonal frequency-division multiplexing (OFDM) systems. We highlight the specificity of AirComp-FL: the samples depend on the gradient value distribution, leading to a higher peak-to-average power ratio (PAPR) than that observed for uniformly distributed signals. Simulation results demonstrate that, in practical settings, the instantaneous transmit power regularly exceeds the power-amplifier limit; however, by applying clipping and filtering, the FL performance can be degraded. The degradation becomes pronounced especially in multi-carrier OFDM systems due to the in-band distortions caused by clipping and filtering.


Abstract:Denoising, detrending, deconvolution: usual restoration tasks, traditionally decoupled. Coupled formulations entail complex ill-posed inverse problems. We propose PENDANTSS for joint trend removal and blind deconvolution of sparse peak-like signals. It blends a parsimonious prior with the hypothesis that smooth trend and noise can somewhat be separated by low-pass filtering. We combine the generalized pseudo-norm ratio SOOT/SPOQ sparse penalties $\ell_p/\ell_q$ with the BEADS ternary assisted source separation algorithm. This results in a both convergent and efficient tool, with a novel Trust-Region block alternating variable metric forward-backward approach. It outperforms comparable methods, when applied to typically peaked analytical chemistry signals. Reproducible code is provided: https://github.com/paulzhengfr/PENDANTSS.
Abstract:Denoising, detrending, deconvolution: usual restoration tasks, traditionally decoupled. Coupled formulations entail complex ill-posed inverse problems. We propose PENDANTSS for joint trend removal and blind deconvolution of sparse peak-like signals. It blends a parsimonious prior with the hypothesis that smooth trend and noise can somewhat be separated by low-pass filtering. We combine the generalized quasi-norm ratio SOOT/SPOQ sparse penalties $\ell_p/\ell_q$ with the BEADS ternary assisted source separation algorithm. This results in a both convergent and efficient tool, with a novel Trust-Region block alternating variable metric forward-backward approach. It outperforms comparable methods, when applied to typically peaked analytical chemistry signals. Reproducible code is provided.