Abstract:This study explores the potential for artificial agents to develop core consciousness, as proposed by Antonio Damasio's theory of consciousness. According to Damasio, the emergence of core consciousness relies on the integration of a self model, informed by representations of emotions and feelings, and a world model. We hypothesize that an artificial agent, trained via reinforcement learning (RL) in a virtual environment, can develop preliminary forms of these models as a byproduct of its primary task. The agent's main objective is to learn to play a video game and explore the environment. To evaluate the emergence of world and self models, we employ probes-feedforward classifiers that use the activations of the trained agent's neural networks to predict the spatial positions of the agent itself. Our results demonstrate that the agent can form rudimentary world and self models, suggesting a pathway toward developing machine consciousness. This research provides foundational insights into the capabilities of artificial agents in mirroring aspects of human consciousness, with implications for future advancements in artificial intelligence.
Abstract:Reservoir computing - information processing based on untrained recurrent neural networks with random connections - is expected to depend on the nonlinear properties of the neurons and the resulting oscillatory, chaotic, or fixpoint dynamics of the network. However, the required degree of nonlinearity and the range of suitable dynamical regimes for a given task are not fully understood. To clarify these questions, we study the accuracy of a reservoir computer in artificial classification tasks of varying complexity, while tuning the neuron's degree of nonlinearity and the reservoir's dynamical regime. We find that, even for activation functions with extremely reduced nonlinearity, weak recurrent interactions and small input signals, the reservoir is able to compute useful representations, detectable only in higher order principal components, that render complex classificiation tasks linearly separable for the readout layer. When increasing the recurrent coupling, the reservoir develops spontaneous dynamical behavior. Nevertheless, the input-related computations can 'ride on top' of oscillatory or fixpoint attractors without much loss of accuracy, whereas chaotic dynamics reduces task performance more drastically. By tuning the system through the full range of dynamical phases, we find that the accuracy peaks both at the oscillatory/chaotic and at the chaotic/fixpoint phase boundaries, thus supporting the 'edge of chaos' hypothesis. Our results, in particular the robust weakly nonlinear operating regime, may offer new perspectives both for technical and biological neural networks with random connectivity.
Abstract:Understanding how language and linguistic constructions are processed in the brain is a fundamental question in cognitive computational neuroscience. In this study, we explore the representation and processing of Argument Structure Constructions (ASCs) in a recurrent neural language model. We trained a Long Short-Term Memory (LSTM) network on a custom-made dataset consisting of 2000 sentences, generated using GPT-4, representing four distinct ASCs: transitive, ditransitive, caused-motion, and resultative constructions. We analyzed the internal activations of the LSTM model's hidden layers using Multidimensional Scaling (MDS) and t-Distributed Stochastic Neighbor Embedding (t-SNE) to visualize the sentence representations. The Generalized Discrimination Value (GDV) was calculated to quantify the degree of clustering within these representations. Our results show that sentence representations form distinct clusters corresponding to the four ASCs across all hidden layers, with the most pronounced clustering observed in the last hidden layer before the output layer. This indicates that even a relatively simple, brain-constrained recurrent neural network can effectively differentiate between various construction types. These findings are consistent with previous studies demonstrating the emergence of word class and syntax rule representations in recurrent language models trained on next word prediction tasks. In future work, we aim to validate these results using larger language models and compare them with neuroimaging data obtained during continuous speech perception. This study highlights the potential of recurrent neural language models to mirror linguistic processing in the human brain, providing valuable insights into the computational and neural mechanisms underlying language understanding.
Abstract:Mathematical models are vital to the field of metrology, playing a key role in the derivation of measurement results and the calculation of uncertainties from measurement data, informed by an understanding of the measurement process. These models generally represent the correlation between the quantity being measured and all other pertinent quantities. Such relationships are used to construct measurement systems that can interpret measurement data to generate conclusions and predictions about the measurement system itself. Classic models are typically analytical, built on fundamental physical principles. However, the rise of digital technology, expansive sensor networks, and high-performance computing hardware have led to a growing shift towards data-driven methodologies. This trend is especially prominent when dealing with large, intricate networked sensor systems in situations where there is limited expert understanding of the frequently changing real-world contexts. Here, we demonstrate the variety of opportunities that data-driven modeling presents, and how they have been already implemented in various real-world applications.
Abstract:The ability to transmit and receive complex information via language is unique to humans and is the basis of traditions, culture and versatile social interactions. Through the disruptive introduction of transformer based large language models (LLMs) humans are not the only entity to "understand" and produce language any more. In the present study, we have performed the first steps to use LLMs as a model to understand fundamental mechanisms of language processing in neural networks, in order to make predictions and generate hypotheses on how the human brain does language processing. Thus, we have used ChatGPT to generate seven different stylistic variations of ten different narratives (Aesop's fables). We used these stories as input for the open source LLM BERT and have analyzed the activation patterns of the hidden units of BERT using multi-dimensional scaling and cluster analysis. We found that the activation vectors of the hidden units cluster according to stylistic variations in earlier layers of BERT (1) than narrative content (4-5). Despite the fact that BERT consists of 12 identical building blocks that are stacked and trained on large text corpora, the different layers perform different tasks. This is a very useful model of the human brain, where self-similar structures, i.e. different areas of the cerebral cortex, can have different functions and are therefore well suited to processing language in a very efficient way. The proposed approach has the potential to open the black box of LLMs on the one hand, and might be a further step to unravel the neural processes underlying human language processing and cognition in general.
Abstract:Cognitive maps are a proposed concept on how the brain efficiently organizes memories and retrieves context out of them. The entorhinal-hippocampal complex is heavily involved in episodic and relational memory processing, as well as spatial navigation and is thought to built cognitive maps via place and grid cells. To make use of the promising properties of cognitive maps, we set up a multi-modal neural network using successor representations which is able to model place cell dynamics and cognitive map representations. Here, we use multi-modal inputs consisting of images and word embeddings. The network learns the similarities between novel inputs and the training database and therefore the representation of the cognitive map successfully. Subsequently, the prediction of the network can be used to infer from one modality to another with over $90\%$ accuracy. The proposed method could therefore be a building block to improve current AI systems for better understanding of the environment and the different modalities in which objects appear. The association of specific modalities with certain encounters can therefore lead to context awareness in novel situations when similar encounters with less information occur and additional information can be inferred from the learned cognitive map. Cognitive maps, as represented by the entorhinal-hippocampal complex in the brain, organize and retrieve context from memories, suggesting that large language models (LLMs) like ChatGPT could harness similar architectures to function as a high-level processing center, akin to how the hippocampus operates within the cortex hierarchy. Finally, by utilizing multi-modal inputs, LLMs can potentially bridge the gap between different forms of data (like images and words), paving the way for context-awareness and grounding of abstract concepts through learned associations, addressing the grounding problem in AI.
Abstract:In the evolving landscape of data science, the accurate quantification of clustering in high-dimensional data sets remains a significant challenge, especially in the absence of predefined labels. This paper introduces a novel approach, the Entropy of Distance Distribution (EDD), which represents a paradigm shift in label-free clustering analysis. Traditional methods, reliant on discrete labels, often struggle to discern intricate cluster patterns in unlabeled data. EDD, however, leverages the characteristic differences in pairwise point-to-point distances to discern clustering tendencies, independent of data labeling. Our method employs the Shannon information entropy to quantify the 'peakedness' or 'flatness' of distance distributions in a data set. This entropy measure, normalized against its maximum value, effectively distinguishes between strongly clustered data (indicated by pronounced peaks in distance distribution) and more homogeneous, non-clustered data sets. This label-free quantification is resilient against global translations and permutations of data points, and with an additional dimension-wise z-scoring, it becomes invariant to data set scaling. We demonstrate the efficacy of EDD through a series of experiments involving two-dimensional data spaces with Gaussian cluster centers. Our findings reveal a monotonic increase in the EDD value with the widening of cluster widths, moving from well-separated to overlapping clusters. This behavior underscores the method's sensitivity and accuracy in detecting varying degrees of clustering. EDD's potential extends beyond conventional clustering analysis, offering a robust, scalable tool for unraveling complex data structures without reliance on pre-assigned labels.
Abstract:The human brain possesses the extraordinary capability to contextualize the information it receives from our environment. The entorhinal-hippocampal plays a critical role in this function, as it is deeply engaged in memory processing and constructing cognitive maps using place and grid cells. Comprehending and leveraging this ability could significantly augment the field of artificial intelligence. The multi-scale successor representation serves as a good model for the functionality of place and grid cells and has already shown promise in this role. Here, we introduce a model that employs successor representations and neural networks, along with word embedding vectors, to construct a cognitive map of three separate concepts. The network adeptly learns two different scaled maps and situates new information in proximity to related pre-existing representations. The dispersion of information across the cognitive map varies according to its scale - either being heavily concentrated, resulting in the formation of the three concepts, or spread evenly throughout the map. We suggest that our model could potentially improve current AI models by providing multi-modal context information to any input, based on a similarity metric for the input and pre-existing knowledge representations.
Abstract:How do humans learn language, and can the first language be learned at all? These fundamental questions are still hotly debated. In contemporary linguistics, there are two major schools of thought that give completely opposite answers. According to Chomsky's theory of universal grammar, language cannot be learned because children are not exposed to sufficient data in their linguistic environment. In contrast, usage-based models of language assume a profound relationship between language structure and language use. In particular, contextual mental processing and mental representations are assumed to have the cognitive capacity to capture the complexity of actual language use at all levels. The prime example is syntax, i.e., the rules by which words are assembled into larger units such as sentences. Typically, syntactic rules are expressed as sequences of word classes. However, it remains unclear whether word classes are innate, as implied by universal grammar, or whether they emerge during language acquisition, as suggested by usage-based approaches. Here, we address this issue from a machine learning and natural language processing perspective. In particular, we trained an artificial deep neural network on predicting the next word, provided sequences of consecutive words as input. Subsequently, we analyzed the emerging activation patterns in the hidden layers of the neural network. Strikingly, we find that the internal representations of nine-word input sequences cluster according to the word class of the tenth word to be predicted as output, even though the neural network did not receive any explicit information about syntactic rules or word classes during training. This surprising result suggests, that also in the human brain, abstract representational categories such as word classes may naturally emerge as a consequence of predictive coding and processing during language acquisition.
Abstract:Free-running Recurrent Neural Networks (RNNs), especially probabilistic models, generate an ongoing information flux that can be quantified with the mutual information $I\left[\vec{x}(t),\vec{x}(t\!+\!1)\right]$ between subsequent system states $\vec{x}$. Although, former studies have shown that $I$ depends on the statistics of the network's connection weights, it is unclear (1) how to maximize $I$ systematically and (2) how to quantify the flux in large systems where computing the mutual information becomes intractable. Here, we address these questions using Boltzmann machines as model systems. We find that in networks with moderately strong connections, the mutual information $I$ is approximately a monotonic transformation of the root-mean-square averaged Pearson correlations between neuron-pairs, a quantity that can be efficiently computed even in large systems. Furthermore, evolutionary maximization of $I\left[\vec{x}(t),\vec{x}(t\!+\!1)\right]$ reveals a general design principle for the weight matrices enabling the systematic construction of systems with a high spontaneous information flux. Finally, we simultaneously maximize information flux and the mean period length of cyclic attractors in the state space of these dynamical networks. Our results are potentially useful for the construction of RNNs that serve as short-time memories or pattern generators.