Abstract:In many recommender problems, a handful of popular items (e.g. movies/TV shows, news etc.) can be dominant in recommendations for many users. However, we know that in a large catalog of items, users are likely interested in more than what is popular. The dominance of popular items may mean that users will not see items they would likely enjoy. In this paper, we propose a technique to overcome this problem using adversarial machine learning. We define a metric to translate user-level utility metric in terms of an advantage/disadvantage over items. We subsequently use that metric in an adversarial learning framework to systematically promote disadvantaged items. The resulting algorithm identifies semantically meaningful items that get promoted in the learning algorithm. In the empirical study, we evaluate the proposed technique on three publicly available datasets and four competitive baselines. The result shows that our proposed method not only improves the coverage, but also, surprisingly, improves the overall performance.
Abstract:We propose Coactive Learning as a model of interaction between a learning system and a human user, where both have the common goal of providing results of maximum utility to the user. At each step, the system (e.g. search engine) receives a context (e.g. query) and predicts an object (e.g. ranking). The user responds by correcting the system if necessary, providing a slightly improved -- but not necessarily optimal -- object as feedback. We argue that such feedback can often be inferred from observable user behavior, for example, from clicks in web-search. Evaluating predictions by their cardinal utility to the user, we propose efficient learning algorithms that have ${\cal O}(\frac{1}{\sqrt{T}})$ average regret, even though the learning algorithm never observes cardinal utility values as in conventional online learning. We demonstrate the applicability of our model and learning algorithms on a movie recommendation task, as well as ranking for web-search.
Abstract:In this paper, we present a supervised learning approach to training submodular scoring functions for extractive multi-document summarization. By taking a structured predicition approach, we provide a large-margin method that directly optimizes a convex relaxation of the desired performance measure. The learning method applies to all submodular summarization methods, and we demonstrate its effectiveness for both pairwise as well as coverage-based scoring functions on multiple datasets. Compared to state-of-the-art functions that were tuned manually, our method significantly improves performance and enables high-fidelity models with numbers of parameters well beyond what could reasonbly be tuned by hand.