Abstract:As cyclones become more intense due to climate change, the rise of AI-based modelling provides a more affordable and accessible approach compared to traditional methods based on mathematical models. This work leverages diffusion models to forecast cyclone trajectories and precipitation patterns by integrating satellite imaging, remote sensing, and atmospheric data, employing a cascaded approach that incorporates forecasting, super-resolution, and precipitation modelling, with training on a dataset of 51 cyclones from six major basins. Experiments demonstrate that the final forecasts from the cascaded models show accurate predictions up to a 36-hour rollout, with SSIM and PSNR values exceeding 0.5 and 20 dB, respectively, for all three tasks. This work also highlights the promising efficiency of AI methods such as diffusion models for high-performance needs, such as cyclone forecasting, while remaining computationally affordable, making them ideal for highly vulnerable regions with critical forecasting needs and financial limitations. Code accessible at \url{https://github.com/nathzi1505/forecast-diffmodels}.
Abstract:Music source separation (MSS) aims to extract 'vocals', 'drums', 'bass' and 'other' tracks from a piece of mixed music. While deep learning methods have shown impressive results, there is a trend toward larger models. In our paper, we introduce a novel and lightweight architecture called DTTNet, which is based on Dual-Path Module and Time-Frequency Convolutions Time-Distributed Fully-connected UNet (TFC-TDF UNet). DTTNet achieves 10.12 dB cSDR on 'vocals' compared to 10.01 dB reported for Bandsplit RNN (BSRNN) but with 86.7% fewer parameters. We also assess pattern-specific performance and model generalization for intricate audio patterns.
Abstract:The Barlow Twins self-supervised learning objective requires neither negative samples or asymmetric learning updates, achieving results on a par with the current state-of-the-art within Computer Vision. As such, we present Audio Barlow Twins, a novel self-supervised audio representation learning approach, adapting Barlow Twins to the audio domain. We pre-train on the large-scale audio dataset AudioSet, and evaluate the quality of the learnt representations on 18 tasks from the HEAR 2021 Challenge, achieving results which outperform, or otherwise are on a par with, the current state-of-the-art for instance discrimination self-supervised learning approaches to audio representation learning. Code at https://github.com/jonahanton/SSL_audio.