Abstract:Automatic art analysis employs different image processing techniques to classify and categorize works of art. When working with artistic images, we need to take into account further considerations compared to classical image processing. This is because such artistic paintings change drastically depending on the author, the scene depicted, and their artistic style. This can result in features that perform very well in a given task but do not grasp the whole of the visual and symbolic information contained in a painting. In this paper, we show how the features obtained from different tasks in artistic image classification are suitable to solve other ones of similar nature. We present different methods to improve the generalization capabilities and performance of artistic classification systems. Furthermore, we propose an explainable artificial intelligence method to map known visual traits of an image with the features used by the deep learning model considering fuzzy rules. These rules show the patterns and variables that are relevant to solve each task and how effective is each of the patterns found. Our results show that our proposed context-aware features can achieve up to $6\%$ and $26\%$ more accurate results than other context- and non-context-aware solutions, respectively, depending on the specific task. We also show that some of the features used by these models can be more clearly correlated to visual traits in the original image than others.
Abstract:Human sciences have traditionally relied on human reasoning and intelligence to infer knowledge from a wide range of sources, such as oral and written narrations, reports, and traditions. Here we develop an extension of classical social network analysis approaches to incorporate the concept of meaning in each actor, as a mean to quantify and infer further knowledge from the original source of the network. This extension is based on a new affinity function, the semantic affinity, that establishes fuzzy-like relationships between the different actors in the network, using combinations of affinity functions. We also propose a new heuristic algorithm based on the shortest capacity problem to compute this affinity function. We use these concept of meaning and semantic affinity to analyze and compare the gods and heroes from three different classical mythologies: Greek, Celtic and Nordic. We study the relationships of each individual mythology and those of common structure that is formed when we fuse the three of them. We show a strong connection between the Celtic and Nordic gods and that Greeks put more emphasis on heroic characters rather than deities. Our approach provides a technique to highlight and quantify important relationships in the original domain of the network not deducible from its structural properties.