Abstract:Machine learning and deep learning advancements have boosted Brain-Computer Interface (BCI) performance, but their wide-scale applicability is limited due to factors like individual health, hardware variations, and cultural differences affecting neural data. Studies often focus on uniform single-site experiments in uniform settings, leading to high performance that may not translate well to real-world diversity. Deep learning models aim to enhance BCI classification accuracy, and transfer learning has been suggested to adapt models to individual neural patterns using a base model trained on others' data. This approach promises better generalizability and reduced overfitting, yet challenges remain in handling diverse and imbalanced datasets from different equipment, subjects, multiple centres in different countries, and both healthy and patient populations for effective model transfer and tuning. In a setting characterized by maximal heterogeneity, we proposed P300 wave detection in BCIs employing a convolutional neural network fitted with adaptive transfer learning based on Poison Sampling Disk (PDS) called Active Sampling (AS), which flexibly adjusts the transition from source data to the target domain. Our results reported for subject adaptive with 40% of adaptive fine-tuning that the averaged classification accuracy improved by 5.36% and standard deviation reduced by 12.22% using two distinct, internationally replicated datasets. These results outperformed in classification accuracy, computational time, and training efficiency, mainly due to the proposed Active Sampling (AS) method for transfer learning.
Abstract:As the data resources grow, providing recommendations that best meet the demands has become a vital requirement in business and life to overcome the information overload problem. However, building a system suggesting relevant recommendations has always been a point of debate. One of the most cost-efficient techniques in terms of producing relevant recommendations at a low complexity is Product Quantization (PQ). PQ approaches have continued developing in recent years. This system's crucial challenge is improving product quantization performance in terms of recall measures without compromising its complexity. This makes the algorithm suitable for problems that require a greater number of potentially relevant items without disregarding others, at high-speed and low-cost to keep up with traffic. This is the case of online shops where the recommendations for the purpose are important, although customers can be susceptible to scoping other products. This research proposes a fuzzy approach to perform norm-based product quantization. Type-2 Fuzzy sets (T2FSs) define the codebook allowing sub-vectors (T2FSs) to be associated with more than one element of the codebook, and next, its norm calculus is resolved by means of integration. Our method finesses the recall measure up, making the algorithm suitable for problems that require querying at most possible potential relevant items without disregarding others. The proposed method outperforms all PQ approaches such as NEQ, PQ, and RQ up to +6%, +5%, and +8% by achieving a recall of 94%, 69%, 59% in Netflix, Audio, Cifar60k datasets, respectively. More and over, computing time and complexity nearly equals the most computationally efficient existing PQ method in the state-of-the-art.
Abstract:Most of today's wearable technology provides seamless cardiac activity monitoring. Specifically, the vast majority employ Photoplethysmography (PPG) sensors to acquire blood volume pulse information, which is further analysed to extract useful and physiologically related features. Nevertheless, PPG-based signal reliability presents different challenges that strongly affect such data processing. This is mainly related to the fact of PPG morphological wave distortion due to motion artefacts, which can lead to erroneous interpretation of the extracted cardiac-related features. On this basis, in this paper, we propose a novel personalised and adjustable Interval Type-2 Fuzzy Logic System (IT2FLS) for assessing the quality of PPG signals. The proposed system employs a personalised approach to adapt the IT2FLS parameters to the unique characteristics of each individual's PPG signals.Additionally, the system provides adjustable levels of personalisation, allowing healthcare providers to adjust the system to meet specific requirements for different applications. The proposed system obtained up to 93.72\% for average accuracy during validation. The presented system has the potential to enable ultra-low complexity and real-time PPG quality assessment, improving the accuracy and reliability of PPG-based health monitoring systems at the edge.
Abstract:Automatic art analysis employs different image processing techniques to classify and categorize works of art. When working with artistic images, we need to take into account further considerations compared to classical image processing. This is because such artistic paintings change drastically depending on the author, the scene depicted, and their artistic style. This can result in features that perform very well in a given task but do not grasp the whole of the visual and symbolic information contained in a painting. In this paper, we show how the features obtained from different tasks in artistic image classification are suitable to solve other ones of similar nature. We present different methods to improve the generalization capabilities and performance of artistic classification systems. Furthermore, we propose an explainable artificial intelligence method to map known visual traits of an image with the features used by the deep learning model considering fuzzy rules. These rules show the patterns and variables that are relevant to solve each task and how effective is each of the patterns found. Our results show that our proposed context-aware features can achieve up to $6\%$ and $26\%$ more accurate results than other context- and non-context-aware solutions, respectively, depending on the specific task. We also show that some of the features used by these models can be more clearly correlated to visual traits in the original image than others.
Abstract:Explainable Artificial Intelligence (XAI) is a paradigm that delivers transparent models and decisions, which are easy to understand, analyze, and augment by a non-technical audience. Fuzzy Logic Systems (FLS) based XAI can provide an explainable framework, while also modeling uncertainties present in real-world environments, which renders it suitable for applications where explainability is a requirement. However, most real-life processes are not characterized by high levels of uncertainties alone; they are inherently time-dependent as well, i.e., the processes change with time. In this work, we present novel Temporal Type-2 FLS Based Approach for time-dependent XAI (TXAI) systems, which can account for the likelihood of a measurement's occurrence in the time domain using (the measurement's) frequency of occurrence. In Temporal Type-2 Fuzzy Sets (TT2FSs), a four-dimensional (4D) time-dependent membership function is developed where relations are used to construct the inter-relations between the elements of the universe of discourse and its frequency of occurrence. The TXAI system manifested better classification prowess, with 10-fold test datasets, with a mean recall of 95.40\% than a standard XAI system (based on non-temporal general type-2 (GT2) fuzzy sets) that had a mean recall of 87.04\%. TXAI also performed significantly better than most non-explainable AI systems between 3.95\%, to 19.04\% improvement gain in mean recall. In addition, TXAI can also outline the most likely time-dependent trajectories using the frequency of occurrence values embedded in the TXAI model; viz. given a rule at a determined time interval, what will be the next most likely rule at a subsequent time interval. In this regard, the proposed TXAI system can have profound implications for delineating the evolution of real-life time-dependent processes, such as behavioural or biological processes.
Abstract:Human beings have an inherent capability to use linguistic information (LI) seamlessly even though it is vague and imprecise. Computing with Words (CWW) was proposed to impart computing systems with this capability of human beings. The interest in the field of CWW is evident from a number of publications on various CWW methodologies. These methodologies use different ways to model the semantics of the LI. However, to the best of our knowledge, the literature on these methodologies is mostly scattered and does not give an interested researcher a comprehensive but gentle guide about the notion and utility of these methodologies. Hence, to introduce the foundations and state-of-the-art CWW methodologies, we provide a concise but a wide-ranging coverage of them in a simple and easy to understand manner. We feel that the simplicity with which we give a high-quality review and introduction to the CWW methodologies is very useful for investigators, especially those embarking on the use of CWW for the first time. We also provide future research directions to build upon for the interested and motivated researchers.
Abstract:In recent years, neural networks and especially deep architectures have received substantial attention for EEG signal analysis in the field of brain-computer interfaces (BCIs). In this ongoing research area, the end-to-end models are more favoured than traditional approaches requiring signal transformation pre-classification. They can eliminate the need for prior information from experts and the extraction of handcrafted features. However, although several deep learning algorithms have been already proposed in the literature, achieving high accuracies for classifying motor movements or mental tasks, they often face a lack of interpretability and therefore are not quite favoured by the neuroscience community. The reasons behind this issue can be the high number of parameters and the sensitivity of deep neural networks to capture tiny yet unrelated discriminative features. We propose an end-to-end deep learning architecture called EEG-ITNet and a more comprehensible method to visualise the network learned patterns. Using inception modules and causal convolutions with dilation, our model can extract rich spectral, spatial, and temporal information from multi-channel EEG signals with less complexity (in terms of the number of trainable parameters) than other existing end-to-end architectures, such as EEG-Inception and EEG-TCNet. By an exhaustive evaluation on dataset 2a from BCI competition IV and OpenBMI motor imagery dataset, EEG-ITNet shows up to 5.9\% improvement in the classification accuracy in different scenarios with statistical significance compared to its competitors. We also comprehensively explain and support the validity of network illustration from a neuroscientific perspective. We have also made our code open at https://github.com/AbbasSalami/EEG-ITNet
Abstract:The processing and classification of electroencephalographic signals (EEG) are increasingly performed using deep learning frameworks, such as convolutional neural networks (CNNs), to generate abstract features from brain data, automatically paving the way for remarkable classification prowess. However, EEG patterns exhibit high variability across time and uncertainty due to noise. It is a significant problem to be addressed in P300-based Brain Computer Interface (BCI) for smart home interaction. It operates in a non-optimal natural environment where added noise is often present. In this work, we propose a sequential unification of temporal convolutional networks (TCNs) modified to EEG signals, LSTM cells, with a fuzzy neural block (FNB), which we called EEG-TCFNet. Fuzzy components may enable a higher tolerance to noisy conditions. We applied three different architectures comparing the effect of using block FNB to classify a P300 wave to build a BCI for smart home interaction with healthy and post-stroke individuals. Our results reported a maximum classification accuracy of 98.6% and 74.3% using the proposed method of EEG-TCFNet in subject-dependent strategy and subject-independent strategy, respectively. Overall, FNB usage in all three CNN topologies outperformed those without FNB. In addition, we compared the addition of FNB to other state-of-the-art methods and obtained higher classification accuracies on account of the integration with FNB. The remarkable performance of the proposed model, EEG-TCFNet, and the general integration of fuzzy units to other classifiers would pave the way for enhanced P300-based BCIs for smart home interaction within natural settings.
Abstract:The last decades have seen significant advancements in non-invasive neuroimaging technologies that have been increasingly adopted to examine human brain development. However, these improvements have not necessarily been followed by more sophisticated data analysis measures that are able to explain the mechanisms underlying functional brain development. For example, the shift from univariate (single area in the brain) to multivariate (multiple areas in brain) analysis paradigms is of significance as it allows investigations into the interactions between different brain regions. However, despite the potential of multivariate analysis to shed light on the interactions between developing brain regions, artificial intelligence (AI) techniques applied render the analysis non-explainable. The purpose of this paper is to understand the extent to which current state-of-the-art AI techniques can inform functional brain development. In addition, a review of which AI techniques are more likely to explain their learning based on the processes of brain development as defined by developmental cognitive neuroscience (DCN) frameworks is also undertaken. This work also proposes that eXplainable AI (XAI) may provide viable methods to investigate functional brain development as hypothesised by DCN frameworks.
Abstract:In this paper classification of mental task-root Brain-Computer Interfaces (BCI) is being investigated, as those are a dominant area of investigations in BCI and are of utmost interest as these systems can be augmented life of people having severe disabilities. The BCI model's performance is primarily dependent on the size of the feature vector, which is obtained through multiple channels. In the case of mental task classification, the availability of training samples to features are minimal. Very often, feature selection is used to increase the ratio for the mental task classification by getting rid of irrelevant and superfluous features. This paper proposes an approach to select relevant and non-redundant spectral features for the mental task classification. This can be done by using four very known multivariate feature selection methods viz, Bhattacharya's Distance, Ratio of Scatter Matrices, Linear Regression and Minimum Redundancy & Maximum Relevance. This work also deals with a comparative analysis of multivariate and univariate feature selection for mental task classification. After applying the above-stated method, the findings demonstrate substantial improvements in the performance of the learning model for mental task classification. Moreover, the efficacy of the proposed approach is endorsed by carrying out a robust ranking algorithm and Friedman's statistical test for finding the best combinations and comparing different combinations of power spectral density and feature selection methods.