Abstract:Over the last few decades, many aspects of human life have been enhanced with virtual domains, from the advent of digital assistants such as Amazon's Alexa and Apple's Siri to the latest metaverse efforts of the rebranded Meta. These trends underscore the importance of generating photorealistic visual depictions of humans. This has led to the rapid growth of so-called deepfake and talking head generation methods in recent years. Despite their impressive results and popularity, they usually lack certain qualitative aspects such as texture quality, lips synchronization, or resolution, and practical aspects such as the ability to run in real-time. To allow for virtual human avatars to be used in practical scenarios, we propose an end-to-end framework for synthesizing high-quality virtual human faces capable of speech with a special emphasis on performance. We introduce a novel network utilizing visemes as an intermediate audio representation and a novel data augmentation strategy employing a hierarchical image synthesis approach that allows disentanglement of the different modalities used to control the global head motion. Our method runs in real-time, and is able to deliver superior results compared to the current state-of-the-art.
Abstract:In this paper, we present a learning-based method to the keyframe-based video stylization that allows an artist to propagate the style from a few selected keyframes to the rest of the sequence. Its key advantage is that the resulting stylization is semantically meaningful, i.e., specific parts of moving objects are stylized according to the artist's intention. In contrast to previous style transfer techniques, our approach does not require any lengthy pre-training process nor a large training dataset. We demonstrate how to train an appearance translation network from scratch using only a few stylized exemplars while implicitly preserving temporal consistency. This leads to a video stylization framework that supports real-time inference, parallel processing, and random access to an arbitrary output frame. It can also merge the content from multiple keyframes without the need to perform an explicit blending operation. We demonstrate its practical utility in various interactive scenarios, where the user paints over a selected keyframe and sees her style transferred to an existing recorded sequence or a live video stream.