Abstract:We present Sparse R-CNN OBB, a novel framework for the detection of oriented objects in SAR images leveraging sparse learnable proposals. The Sparse R-CNN OBB has streamlined architecture and ease of training as it utilizes a sparse set of 300 proposals instead of training a proposals generator on hundreds of thousands of anchors. To the best of our knowledge, Sparse R-CNN OBB is the first to adopt the concept of sparse learnable proposals for the detection of oriented objects, as well as for the detection of ships in Synthetic Aperture Radar (SAR) images. The detection head of the baseline model, Sparse R-CNN, is re-designed to enable the model to capture object orientation. We also fine-tune the model on RSDD-SAR dataset and provide a performance comparison to state-of-the-art models. Experimental results shows that Sparse R-CNN OBB achieves outstanding performance, surpassing other models on both inshore and offshore scenarios. The code is available at: www.github.com/ka-mirul/Sparse-R-CNN-OBB.
Abstract:We present a novel ship wake simulation system for generating S-band Synthetic Aperture Radar (SAR) images, and demonstrate the use of such imagery for the classification of ships based on their wake signatures via a deep learning approach. Ship wakes are modeled through the linear superposition of wind-induced sea elevation and the Kelvin wakes model of a moving ship. Our SAR imaging simulation takes into account frequency-dependent radar parameters, i.e., the complex dielectric constant ($\varepsilon$) and the relaxation rate ($\mu$) of seawater. The former was determined through the Debye model while the latter was estimated for S-band SAR based on pre-existing values for the L, C, and X-bands. The results show good agreement between simulated and real imagery upon visual inspection. The results of implementing different training strategies are also reported, showcasing a notable improvement in accuracy of classifier achieved by integrating real and simulated SAR images during the training.
Abstract:High accuracy coastline/shoreline extraction from SAR imagery is a crucial step in a number of maritime and coastal monitoring applications. We present a method based on image segmentation using the Generalised Gamma Mixture Model superpixel algorithm (MISP-GGD). MISP-GGD produces superpixels adhering with great accuracy to object edges in the image, such as the coastline. Unsupervised clustering of the generated superpixels according to textural and radiometric features allows for generation of a land/water mask from which a highly accurate coastline can be extracted. We present results of our proposed method on a number of SAR images of varying characteristics.
Abstract:Monitoring of ground movement close to the rail corridor, such as that associated with landslips caused by ground subsidence and/or uplift, is of great interest for the detection and prevention of possible railway faults. Interferometric synthetic-aperture radar (InSAR) data can be used to measure ground deformation, but its use poses distinct challenges, as the data is highly sparse and can be particularly noisy. Here we present a scheme for processing and interpolating noisy, sparse InSAR data into a dense spatio-temporal stack, helping suppress noise and opening up the possibility for treatment with deep learning and other image processing methods.
Abstract:In this paper, SAR image reconstruction with joint phase error estimation (autofocusing) is formulated as an inverse problem. An optimization model utilising a sparsity-enforcing Cauchy regularizer is proposed, and an alternating minimization framework is used to solve it, in which the desired image and the phase errors are optimized alternatively. For the image reconstruction sub-problem (f-sub-problem), two methods are presented capable of handling the problem's complex nature, and we thus present two variants of our SAR image autofocusing algorithm. Firstly, we design a complex version of the forward-backward splitting algorithm (CFBA) to solve the f-sub-problem iteratively. For the second variant, the Wirtinger alternating minimization autofocusing (WAMA) method is presented, in which techniques of Wirtinger calculus are utilized to minimize the complex-valued cost function in the f-sub-problem in a direct fashion. For both methods, the phase error estimation sub-problem is solved by simply expanding and observing its cost function. Moreover, the convergence of both algorithms is discussed in detail. By conducting experiments on both simulated scenes and real SAR images, the proposed method is demonstrated to give impressive autofocusing results compared to other state of the art methods.