Abstract:We present a novel ship wake simulation system for generating S-band Synthetic Aperture Radar (SAR) images, and demonstrate the use of such imagery for the classification of ships based on their wake signatures via a deep learning approach. Ship wakes are modeled through the linear superposition of wind-induced sea elevation and the Kelvin wakes model of a moving ship. Our SAR imaging simulation takes into account frequency-dependent radar parameters, i.e., the complex dielectric constant ($\varepsilon$) and the relaxation rate ($\mu$) of seawater. The former was determined through the Debye model while the latter was estimated for S-band SAR based on pre-existing values for the L, C, and X-bands. The results show good agreement between simulated and real imagery upon visual inspection. The results of implementing different training strategies are also reported, showcasing a notable improvement in accuracy of classifier achieved by integrating real and simulated SAR images during the training.
Abstract:In this paper, SAR image reconstruction with joint phase error estimation (autofocusing) is formulated as an inverse problem. An optimization model utilising a sparsity-enforcing Cauchy regularizer is proposed, and an alternating minimization framework is used to solve it, in which the desired image and the phase errors are optimized alternatively. For the image reconstruction sub-problem (f-sub-problem), two methods are presented capable of handling the problem's complex nature, and we thus present two variants of our SAR image autofocusing algorithm. Firstly, we design a complex version of the forward-backward splitting algorithm (CFBA) to solve the f-sub-problem iteratively. For the second variant, the Wirtinger alternating minimization autofocusing (WAMA) method is presented, in which techniques of Wirtinger calculus are utilized to minimize the complex-valued cost function in the f-sub-problem in a direct fashion. For both methods, the phase error estimation sub-problem is solved by simply expanding and observing its cost function. Moreover, the convergence of both algorithms is discussed in detail. By conducting experiments on both simulated scenes and real SAR images, the proposed method is demonstrated to give impressive autofocusing results compared to other state of the art methods.