Abstract:Anomaly detection is the problem of recognizing abnormal inputs based on the seen examples of normal data. Despite recent advances of deep learning in recognizing image anomalies, these methods still prove incapable of handling complex medical images, such as barely visible abnormalities in chest X-rays and metastases in lymph nodes. To address this problem, we introduce a new powerful method of image anomaly detection. It relies on the classical autoencoder approach with a re-designed training pipeline to handle high-resolution, complex images and a robust way of computing an image abnormality score. We revisit the very problem statement of fully unsupervised anomaly detection, where no abnormal examples at all are provided during the model setup. We propose to relax this unrealistic assumption by using a very small number of anomalies of confined variability merely to initiate the search of hyperparameters of the model. We evaluate our solution on natural image datasets with a known benchmark, as well as on two medical datasets containing radiology and digital pathology images. The proposed approach suggests a new strong baseline for image anomaly detection and outperforms state-of-the-art approaches in complex medical image analysis tasks.
Abstract:We present a novel method for image anomaly detection, where algorithms that use samples drawn from some distribution of "normal" data, aim to detect out-of-distribution (abnormal) samples. Our approach includes a combination of encoder and generator for mapping an image distribution to a predefined latent distribution and vice versa. It leverages Generative Adversarial Networks to learn these data distributions and uses perceptual loss for the detection of image abnormality. To accomplish this goal, we introduce a new similarity metric, which expresses the perceived similarity between images and is robust to changes in image contrast. Secondly, we introduce a novel approach for the selection of weights of a multi-objective loss function (image reconstruction and distribution mapping) in the absence of a validation dataset for hyperparameter tuning. After training, our model measures the abnormality of the input image as the perceptual dissimilarity between it and the closest generated image of the modeled data distribution. The proposed approach is extensively evaluated on several publicly available image benchmarks and achieves state-of-the-art performance.