Abstract:Speech emotion recognition (SER) is crucial for enhancing affective computing and enriching the domain of human-computer interaction. However, the main challenge in SER lies in selecting relevant feature representations from speech signals with lower computational costs. In this paper, we propose a lightweight SER architecture that integrates attention-based local feature blocks (ALFBs) to capture high-level relevant feature vectors from speech signals. We also incorporate a global feature block (GFB) technique to capture sequential, global information and long-term dependencies in speech signals. By aggregating attention-based local and global contextual feature vectors, our model effectively captures the internal correlation between salient features that reflect complex human emotional cues. To evaluate our approach, we extracted four types of spectral features from speech audio samples: mel-frequency cepstral coefficients, mel-spectrogram, root mean square value, and zero-crossing rate. Through a 5-fold cross-validation strategy, we tested the proposed method on five multi-lingual standard benchmark datasets: TESS, RAVDESS, BanglaSER, SUBESCO, and Emo-DB, and obtained a mean accuracy of 99.65%, 94.88%, 98.12%, 97.94%, and 97.19% respectively. The results indicate that our model achieves state-of-the-art (SOTA) performance compared to most existing methods.
Abstract:The Alternate Wetting and Drying (AWD) method is a rice-growing water management technique promoted as a sustainable alternative to Continuous Flooding (CF). Climate change has placed the agricultural sector in a challenging position, particularly as global water resources become increasingly scarce, affecting rice production on irrigated lowlands. Rice, a staple food for over half of the world's population, demands significantly more water than other major crops. In Bangladesh, Boro rice, in particular, requires considerable water inputs during its cultivation. Traditionally, farmers manually measure water levels, a process that is both time-consuming and prone to errors. While ultrasonic sensors offer improvements in water height measurement, they still face limitations, such as susceptibility to weather conditions and environmental factors. To address these issues, we propose a novel approach that automates water height measurement using computer vision, specifically through a convolutional neural network (CNN). Our attention-based architecture achieved an $R^2$ score of 0.9885 and a Mean Squared Error (MSE) of 0.2766, providing a more accurate and efficient solution for managing AWD systems.
Abstract:The recent monkeypox outbreak has raised significant public health concerns due to its rapid spread across multiple countries. Monkeypox can be difficult to distinguish from chickenpox and measles in the early stages because the symptoms of all three diseases are similar. Modern deep learning algorithms can be used to identify diseases, including COVID-19, by analyzing images of the affected areas. In this study, we introduce a lightweight model that merges two pre-trained architectures, EfficientNetV2B3 and ResNet151V2, to classify human monkeypox disease. We have also incorporated the squeeze-and-excitation attention network module to focus on the important parts of the feature maps for classifying the monkeypox images. This attention module provides channels and spatial attention to highlight significant areas within feature maps. We evaluated the effectiveness of our model by extensively testing it on a publicly available Monkeypox Skin Lesions Dataset using a four-fold cross-validation approach. The evaluation metrics of our model were compared with the existing others. Our model achieves a mean validation accuracy of 96.52%, with precision, recall, and F1-score values of 96.58%, 96.52%, and 96.51%, respectively.