Abstract:The Alternate Wetting and Drying (AWD) method is a rice-growing water management technique promoted as a sustainable alternative to Continuous Flooding (CF). Climate change has placed the agricultural sector in a challenging position, particularly as global water resources become increasingly scarce, affecting rice production on irrigated lowlands. Rice, a staple food for over half of the world's population, demands significantly more water than other major crops. In Bangladesh, Boro rice, in particular, requires considerable water inputs during its cultivation. Traditionally, farmers manually measure water levels, a process that is both time-consuming and prone to errors. While ultrasonic sensors offer improvements in water height measurement, they still face limitations, such as susceptibility to weather conditions and environmental factors. To address these issues, we propose a novel approach that automates water height measurement using computer vision, specifically through a convolutional neural network (CNN). Our attention-based architecture achieved an $R^2$ score of 0.9885 and a Mean Squared Error (MSE) of 0.2766, providing a more accurate and efficient solution for managing AWD systems.
Abstract:Traditional Machine Learning (ML) models like Support Vector Machine, Random Forest, and Logistic Regression are generally preferred for classification tasks on tabular datasets. Tabular data consists of rows and columns corresponding to instances and features, respectively. Past studies indicate that traditional classifiers often produce unsatisfactory results in complex tabular datasets. Hence, researchers attempt to use the powerful Convolutional Neural Networks (CNN) for tabular datasets. Recent studies propose several techniques like SuperTML, Conditional GAN (CTGAN), and Tabular Convolution (TAC) for applying Convolutional Neural Networks (CNN) on tabular data. These models outperform the traditional classifiers and substantially improve the performance on tabular data. This study introduces a novel technique, namely, Dynamic Weighted Tabular Method (DWTM), that uses feature weights dynamically based on statistical techniques to apply CNNs on tabular datasets. The method assigns weights dynamically to each feature based on their strength of associativity to the class labels. Each data point is converted into images and fed to a CNN model. The features are allocated image canvas space based on their weights. The DWTM is an improvement on the previously mentioned methods as it dynamically implements the entire experimental setting rather than using the static configuration provided in the previous methods. Furthermore, it uses the novel idea of using feature weights to create image canvas space. In this paper, the DWTM is applied to six benchmarked tabular datasets and it achieves outstanding performance (i.e., average accuracy = 95%) on all of them.