Abstract:Video captioning is a popular task that challenges models to describe events in videos using natural language. In this work, we investigate the ability of various visual feature representations derived from state-of-the-art convolutional neural networks to capture high-level semantic context. We introduce the Weighted Additive Fusion Transformer with Memory Augmented Encoders (WAFTM), a captioning model that incorporates memory in a transformer encoder and uses a novel method, to fuse features, that ensures due importance is given to more significant representations. We illustrate a gain in performance realized by applying Word-Piece Tokenization and a popular REINFORCE algorithm. Finally, we benchmark our model on two datasets and obtain a CIDEr of 92.4 on MSVD and a METEOR of 0.091 on the ActivityNet Captions Dataset.
Abstract:We introduce Knowledge Fusion Transformers for video action classification. We present a self-attention based feature enhancer to fuse action knowledge in 3D inception based spatio-temporal context of the video clip intended to be classified. We show, how using only one stream networks and with little or, no pretraining can pave the way for a performance close to the current state-of-the-art. Additionally, we present how different self-attention architectures used at different levels of the network can be blended-in to enhance feature representation. Our architecture is trained and evaluated on UCF-101 and Charades dataset, where it is competitive with the state of the art. It also exceeds by a large gap from single stream networks with no to less pretraining.