Abstract:This paper presents the system description of our entry for the COLING 2025 FMD challenge, focusing on misinformation detection in financial domains. We experimented with a combination of large language models, including Qwen, Mistral, and Gemma-2, and leveraged pre-processing and sequential learning for not only identifying fraudulent financial content but also generating coherent, and concise explanations that clarify the rationale behind the classifications. Our approach achieved competitive results with an F1-score of 0.8283 for classification, and ROUGE-1 of 0.7253 for explanations. This work highlights the transformative potential of LLMs in financial applications, offering insights into their capabilities for combating misinformation and enhancing transparency while identifying areas for future improvement in robustness and domain adaptation.
Abstract:Organizational charts, also known as org charts, are critical representations of an organization's structure and the hierarchical relationships between its components and positions. However, manually extracting information from org charts can be error-prone and time-consuming. To solve this, we present an automated and end-to-end approach that uses computer vision, deep learning, and natural language processing techniques. Additionally, we propose a metric to evaluate the completeness and hierarchical accuracy of the extracted information. This approach has the potential to improve organizational restructuring and resource utilization by providing a clear and concise representation of the organizational structure. Our study lays a foundation for further research on the topic of hierarchical chart analysis.