Organizational charts, also known as org charts, are critical representations of an organization's structure and the hierarchical relationships between its components and positions. However, manually extracting information from org charts can be error-prone and time-consuming. To solve this, we present an automated and end-to-end approach that uses computer vision, deep learning, and natural language processing techniques. Additionally, we propose a metric to evaluate the completeness and hierarchical accuracy of the extracted information. This approach has the potential to improve organizational restructuring and resource utilization by providing a clear and concise representation of the organizational structure. Our study lays a foundation for further research on the topic of hierarchical chart analysis.