Abstract:The goal of this paper is to propose a vision system for humanoid robotic soccer that does not use any color information. The main features of this system are: (i) real-time operation in the NAO robot, and (ii) the ability to detect the ball, the robots, their orientations, the lines and key field features robustly. Our ball detector, robot detector, and robot's orientation detector obtain the highest reported detection rates. The proposed vision system is tested in a SPL field with several NAO robots under realistic and highly demanding conditions. The obtained results are: robot detection rate of 94.90%, ball detection rate of 97.10%, and a completely perceived orientation rate of 99.88% when the observed robot is static, and 95.52% when the observed robot is moving.
Abstract:The main goal of this paper is to analyze the general problem of using Convolutional Neural Networks (CNNs) in robots with limited computational capabilities, and to propose general design guidelines for their use. In addition, two different CNN based NAO robot detectors that are able to run in real-time while playing soccer are proposed. One of the detectors is based on the XNOR-Net and the other on the SqueezeNet. Each detector is able to process a robot object-proposal in ~1ms, with an average number of 1.5 proposals per frame obtained by the upper camera of the NAO. The obtained detection rate is ~97%.