Abstract:Large Language Models (LLMs) have shown remarkable capabilities across a wide variety of Natural Language Processing (NLP) tasks and have attracted attention from multiple domains, including financial services. Despite the extensive research into general-domain LLMs, and their immense potential in finance, Financial LLM (FinLLM) research remains limited. This survey provides a comprehensive overview of FinLLMs, including their history, techniques, performance, and opportunities and challenges. Firstly, we present a chronological overview of general-domain Pre-trained Language Models (PLMs) through to current FinLLMs, including the GPT-series, selected open-source LLMs, and financial LMs. Secondly, we compare five techniques used across financial PLMs and FinLLMs, including training methods, training data, and fine-tuning methods. Thirdly, we summarize the performance evaluations of six benchmark tasks and datasets. In addition, we provide eight advanced financial NLP tasks and datasets for developing more sophisticated FinLLMs. Finally, we discuss the opportunities and the challenges facing FinLLMs, such as hallucination, privacy, and efficiency. To support AI research in finance, we compile a collection of accessible datasets and evaluation benchmarks on GitHub.
Abstract:The Federal Reserve System (the Fed) plays a significant role in affecting monetary policy and financial conditions worldwide. Although it is important to analyse the Fed's communications to extract useful information, it is generally long-form and complex due to the ambiguous and esoteric nature of content. In this paper, we present FedNLP, an interpretable multi-component Natural Language Processing system to decode Federal Reserve communications. This system is designed for end-users to explore how NLP techniques can assist their holistic understanding of the Fed's communications with NO coding. Behind the scenes, FedNLP uses multiple NLP models from traditional machine learning algorithms to deep neural network architectures in each downstream task. The demonstration shows multiple results at once including sentiment analysis, summary of the document, prediction of the Federal Funds Rate movement and visualization for interpreting the prediction model's result.