Abstract:Large Language Models (LLMs) have shown remarkable capabilities across a wide variety of Natural Language Processing (NLP) tasks and have attracted attention from multiple domains, including financial services. Despite the extensive research into general-domain LLMs, and their immense potential in finance, Financial LLM (FinLLM) research remains limited. This survey provides a comprehensive overview of FinLLMs, including their history, techniques, performance, and opportunities and challenges. Firstly, we present a chronological overview of general-domain Pre-trained Language Models (PLMs) through to current FinLLMs, including the GPT-series, selected open-source LLMs, and financial LMs. Secondly, we compare five techniques used across financial PLMs and FinLLMs, including training methods, training data, and fine-tuning methods. Thirdly, we summarize the performance evaluations of six benchmark tasks and datasets. In addition, we provide eight advanced financial NLP tasks and datasets for developing more sophisticated FinLLMs. Finally, we discuss the opportunities and the challenges facing FinLLMs, such as hallucination, privacy, and efficiency. To support AI research in finance, we compile a collection of accessible datasets and evaluation benchmarks on GitHub.
Abstract:Predictive business process monitoring aims at providing predictions about running instances by analyzing logs of completed cases in a business process. Recently, a lot of research focuses on increasing productivity and efficiency in a business process by forecasting potential problems during its executions. However, most of the studies lack suggesting concrete actions to improve the process. They leave it up to the subjective judgment of a user. In this paper, we propose a novel method to connect the results from predictive business process monitoring to actual business process improvements. More in detail, we optimize the resource allocation in a non-clairvoyant online environment, where we have limited information required for scheduling, by exploiting the predictions. The proposed method integrates the offline prediction model construction that predicts the processing time and the next activity of an ongoing instance using Bayesian Neural Networks (BNNs) with the online resource allocation that is extended from the minimum cost and maximum flow algorithm. To validate the proposed method, we performed experiments using an artificial event log and a real-life event log from a global financial organization.