Abstract:Binary neural networks are the extreme case of network quantization, which has long been thought of as a potential edge machine learning solution. However, the significant accuracy gap to the full-precision counterparts restricts their creative potential for mobile applications. In this work, we revisit the potential of binary neural networks and focus on a compelling but unanswered problem: how can a binary neural network achieve the crucial accuracy level (e.g., 80%) on ILSVRC-2012 ImageNet? We achieve this goal by enhancing the optimization process from three complementary perspectives: (1) We design a novel binary architecture BNext based on a comprehensive study of binary architectures and their optimization process. (2) We propose a novel knowledge-distillation technique to alleviate the counter-intuitive overfitting problem observed when attempting to train extremely accurate binary models. (3) We analyze the data augmentation pipeline for binary networks and modernize it with up-to-date techniques from full-precision models. The evaluation results on ImageNet show that BNext, for the first time, pushes the binary model accuracy boundary to 80.57% and significantly outperforms all the existing binary networks. Code and trained models are available at: https://github.com/hpi-xnor/BNext.git.
Abstract:Recent works on Binary Neural Networks (BNNs) have made promising progress in narrowing the accuracy gap of BNNs to their 32-bit counterparts. However, the accuracy gains are often based on specialized model designs using additional 32-bit components. Furthermore, almost all previous BNNs use 32-bit for feature maps and the shortcuts enclosing the corresponding binary convolution blocks, which helps to effectively maintain the accuracy, but is not friendly to hardware accelerators with limited memory, energy, and computing resources. Thus, we raise the following question: How can accuracy and energy consumption be balanced in a BNN network design? We extensively study this fundamental problem in this work and propose a novel BNN architecture without most commonly used 32-bit components: \textit{BoolNet}. Experimental results on ImageNet demonstrate that BoolNet can achieve 4.6x energy reduction coupled with 1.2\% higher accuracy than the commonly used BNN architecture Bi-RealNet. Code and trained models are available at: https://github.com/hpi-xnor/BoolNet.