Abstract:Recent progress in geospatial foundation models highlights the importance of learning general-purpose representations for real-world locations, particularly points-of-interest (POIs) where human activity concentrates. Existing approaches, however, focus primarily on place identity derived from static textual metadata, or learn representations tied to trajectory context, which capture movement regularities rather than how places are actually used (i.e., POI's function). We argue that POI function is a missing but essential signal for general POI representations. We introduce Mobility-Embedded POIs (ME-POIs), a framework that augments POI embeddings derived, from language models with large-scale human mobility data to learn POI-centric, context-independent representations grounded in real-world usage. ME-POIs encodes individual visits as temporally contextualized embeddings and aligns them with learnable POI representations via contrastive learning to capture usage patterns across users and time. To address long-tail sparsity, we propose a novel mechanism that propagates temporal visit patterns from nearby, frequently visited POIs across multiple spatial scales. We evaluate ME-POIs on five newly proposed map enrichment tasks, testing its ability to capture both the identity and function of POIs. Across all tasks, augmenting text-based embeddings with ME-POIs consistently outperforms both text-only and mobility-only baselines. Notably, ME-POIs trained on mobility data alone can surpass text-only models on certain tasks, highlighting that POI function is a critical component of accurate and generalizable POI representations.

Abstract:Being widely adopted by the transportation and planning practitioners, the fundamental diagram (FD) is the primary tool used to relate the key macroscopic traffic variables of speed, flow, and density. We empirically analyze the relation between vehicular space-mean speeds and flows given different signal settings and postulate a parsimonious parametric function form of the traditional FD where its function parameters are explicitly modeled as a function of the signal plan factors. We validate the proposed formulation using data from signalized urban road segments in Salt Lake City, Utah, USA. The proposed formulation builds our understanding of how changes to signal settings impact the FDs, and more generally the congestion patterns, of signalized urban segments.




Abstract:We propose and study a data-driven framework for identifying traffic congestion functions (numerical relationships between observations of macroscopic traffic variables) at global scale and segment-level granularity. In contrast to methods that estimate a separate set of parameters for each roadway, ours learns a single black-box function over all roadways in a metropolitan area. First, we pool traffic data from all segments into one dataset, combining static attributes with dynamic time-dependent features. Second, we train a feed-forward neural network on this dataset, which we can then use on any segment in the area. We evaluate how well our framework identifies congestion functions on observed segments and how it generalizes to unobserved segments and predicts segment attributes on a large dataset covering multiple cities worldwide. For identification error on observed segments, our single data-driven congestion function compares favorably to segment-specific model-based functions on highway roads, but has room to improve on arterial roads. For generalization, our approach shows strong performance across cities and road types: both on unobserved segments in the same city and on zero-shot transfer learning between cities. Finally, for predicting segment attributes, we find that our approach can approximate critical densities for individual segments using their static properties.
Abstract:Over the years researchers have studied the evolution of Electrocardiogram (ECG) and the complex classification of cardiovascular diseases. This review focuses on the evolution of the ECG, and covers the most recent signal processing schemes with milestones over last 150 years in a systematic manner. Development phases of ECG, ECG leads, portable ECG monitors, Signal Processing Schemes and the Complex Transformations are discussed. It also provides recommendations for the inclusion of certain important points based on the review.