Abstract:The recent advent of autonomous laboratories, coupled with algorithms for high-throughput screening and active learning, promises to accelerate materials discovery and innovation. As these autonomous systems grow in complexity, the demand for robust and efficient workflow management software becomes increasingly critical. In this paper, we introduce AlabOS, a general-purpose software framework for orchestrating experiments and managing resources, with an emphasis on automated laboratories for materials synthesis and characterization. We demonstrate the implementation of AlabOS in a prototype autonomous materials laboratory. AlabOS features a reconfigurable experiment workflow model, enabling the simultaneous execution of varied workflows composed of modular tasks. Therefore, AlabOS is well-suited to handle the rapidly changing experimental protocols defining the progress of self-driving laboratory development for materials research.
Abstract:To assist in the development of machine learning methods for automated classification of spectroscopic data, we have generated a universal synthetic dataset that can be used for model validation. This dataset contains artificial spectra designed to represent experimental measurements from techniques including X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy. The dataset generation process features customizable parameters, such as scan length and peak count, which can be adjusted to fit the problem at hand. As an initial benchmark, we simulated a dataset containing 35,000 spectra based on 500 unique classes. To automate the classification of this data, eight different machine learning architectures were evaluated. From the results, we shed light on which factors are most critical to achieve optimal performance for the classification task. The scripts used to generate synthetic spectra, as well as our benchmark dataset and evaluation routines, are made publicly available to aid in the development of improved machine learning models for spectroscopic analysis.
Abstract:Autonomous synthesis and characterization of inorganic materials requires the automatic and accurate analysis of X-ray diffraction spectra. For this task, we designed a probabilistic deep learning algorithm to identify complex multi-phase mixtures. At the core of this algorithm lies an ensemble convolutional neural network trained on simulated diffraction spectra, which are systematically augmented with physics-informed perturbations to account for artifacts that can arise during experimental sample preparation and synthesis. Larger perturbations associated with off-stoichiometry are also captured by supplementing the training set with hypothetical solid solutions. Spectra containing mixtures of materials are analyzed with a newly developed branching algorithm that utilizes the probabilistic nature of the neural network to explore suspected mixtures and identify the set of phases that maximize confidence in the prediction. Our model is benchmarked on simulated and experimentally measured diffraction spectra, showing exceptional performance with accuracies exceeding those given by previously reported methods based on profile matching and deep learning. We envision that the algorithm presented here may be integrated in experimental workflows to facilitate the high-throughput and autonomous discovery of inorganic materials.