Abstract:Automatic sleep staging based on electroencephalography (EEG) and electromyography (EMG) signals is an important aspect of sleep-related research. Current sleep staging methods suffer from two major drawbacks. First, there are limited information interactions between modalities in the existing methods. Second, current methods do not develop unified models that can handle different sources of input. To address these issues, we propose a novel sleep stage scoring model sDREAMER, which emphasizes cross-modality interaction and per-channel performance. Specifically, we develop a mixture-of-modality-expert (MoME) model with three pathways for EEG, EMG, and mixed signals with partially shared weights. We further propose a self-distillation training scheme for further information interaction across modalities. Our model is trained with multi-channel inputs and can make classifications on either single-channel or multi-channel inputs. Experiments demonstrate that our model outperforms the existing transformer-based sleep scoring methods for multi-channel inference. For single-channel inference, our model also outperforms the transformer-based models trained with single-channel signals.
Abstract:Efficiently identifying sleep stages is crucial for unraveling the intricacies of sleep in both preclinical and clinical research. The labor-intensive nature of manual sleep scoring, demanding substantial expertise, has prompted a surge of interest in automated alternatives. Sleep studies in mice play a significant role in understanding sleep patterns and disorders and underscore the need for robust scoring methodologies. In response, this study introduces LG-Sleep, a novel subject-independent deep neural network architecture designed for mice sleep scoring through electroencephalogram (EEG) signals. LG-Sleep extracts local and global temporal transitions within EEG signals to categorize sleep data into three stages: wake, rapid eye movement (REM) sleep, and non-rapid eye movement (NREM) sleep. The model leverages local and global temporal information by employing time-distributed convolutional neural networks to discern local temporal transitions in EEG data. Subsequently, features derived from the convolutional filters traverse long short-term memory blocks, capturing global transitions over extended periods. Crucially, the model is optimized in an autoencoder-decoder fashion, facilitating generalization across distinct subjects and adapting to limited training samples. Experimental findings demonstrate superior performance of LG-Sleep compared to conventional deep neural networks. Moreover, the model exhibits good performance across different sleep stages even when tasked with scoring based on limited training samples.