Abstract:Developing accurate, transferable and computationally inexpensive machine learning models can rapidly accelerate the discovery and development of new materials. Some of the major challenges involved in developing such models are, (i) limited availability of materials data as compared to other fields, (ii) lack of universal descriptor of materials to predict its various properties. The limited availability of materials data can be addressed through transfer learning, while the generic representation was recently addressed by Xie and Grossman [1], where they developed a crystal graph convolutional neural network (CGCNN) that provides a unified representation of crystals. In this work, we develop a new model (MT-CGCNN) by integrating CGCNN with transfer learning based on multi-task (MT) learning. We demonstrate the effectiveness of MT-CGCNN by simultaneous prediction of various material properties such as Formation Energy, Band Gap and Fermi Energy for a wide range of inorganic crystals (46774 materials). MT-CGCNN is able to reduce the test error when employed on correlated properties by upto 8%. The model prediction has lower test error compared to CGCNN, even when the training data is reduced by 10%. We also demonstrate our model's better performance through prediction of end user scenario related to metal/non-metal classification. These results encourage further development of machine learning approaches which leverage multi-task learning to address the aforementioned challenges in the discovery of new materials. We make MT-CGCNN's source code available to encourage reproducible research.
Abstract:Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.
Abstract:Semi-supervised learning on graph structured data has received significant attention with the recent introduction of graph convolution networks (GCN). While traditional methods have focused on optimizing a loss augmented with Laplacian regularization framework, GCNs perform an implicit Laplacian type regularization to capture local graph structure. In this work, we propose Lovasz convolutional network (LCNs) which are capable of incorporating global graph properties. LCNs achieve this by utilizing Lovasz's orthonormal embeddings of the nodes. We analyse local and global properties of graphs and demonstrate settings where LCNs tend to work better than GCNs. We validate the proposed method on standard random graph models such as stochastic block models (SBM) and certain community structure based graphs where LCNs outperform GCNs and learn more intuitive embeddings. We also perform extensive binary and multi-class classification experiments on real world datasets to demonstrate LCN's effectiveness. In addition to simple graphs, we also demonstrate the use of LCNs on hypergraphs by identifying settings where they are expected to work better than GCNs.