Abstract:We present ALTO, a network orchestrator for efficiently serving compound AI systems such as pipelines of language models. ALTO achieves high throughput and low latency by taking advantage of an optimization opportunity specific to generative language models: streaming intermediate outputs. As language models produce outputs token by token, ALTO exposes opportunities to stream intermediate outputs between stages when possible. We highlight two new challenges of correctness and load balancing which emerge when streaming intermediate data across distributed pipeline stage instances. We also motivate the need for an aggregation-aware routing interface and distributed prompt-aware scheduling to address these challenges. We demonstrate the impact of ALTO's partial output streaming on a complex chatbot verification pipeline, increasing throughput by up to 3x for a fixed latency target of 4 seconds / request while also reducing tail latency by 1.8x compared to a baseline serving approach.
Abstract:The Age-of-Information (AoI) metric has been widely studied in the theoretical communication networks and queuing systems literature. However, experimental evaluation of its applicability to complex real-world time-sensitive systems is largely lacking. In this work, we develop, implement, and evaluate an AoI-based application layer middleware that enables the customization of WiFi networks to the needs of time-sensitive applications. By controlling the storage and flow of information in the underlying WiFi network, our middleware can: (i) prevent packet collisions; (ii) discard stale packets that are no longer useful; and (iii) dynamically prioritize the transmission of the most relevant information. To demonstrate the benefits of our middleware, we implement a mobility tracking application using a swarm of UAVs communicating with a central controller via WiFi. Our experimental results show that, when compared to WiFi-UDP/WiFi-TCP, the middleware can improve information freshness by a factor of 109x/48x and tracking accuracy by a factor of 4x/6x, respectively. Most importantly, our results also show that the performance gains of our approach increase as the system scales and/or the traffic load increases.