Abstract:Adversarial examples add imperceptible alterations to inputs with the objective to induce misclassification in machine learning models. They have been demonstrated to pose significant challenges in domains like image classification, with results showing that an adversarially perturbed image to evade detection against one classifier is most likely transferable to other classifiers. Adversarial examples have also been studied in malware analysis. Unlike images, program binaries cannot be arbitrarily perturbed without rendering them non-functional. Due to the difficulty of crafting adversarial program binaries, there is no consensus on the transferability of adversarially perturbed programs to different detectors. In this work, we explore the robustness of malware detectors against adversarially perturbed malware. We investigate the transferability of adversarial attacks developed against one detector, against other machine learning-based malware detectors, and code similarity techniques, specifically, locality sensitive hashing-based detectors. Our analysis reveals that adversarial program binaries crafted for one detector are generally less effective against others. We also evaluate an ensemble of detectors and show that they can potentially mitigate the impact of adversarial program binaries. Finally, we demonstrate that substantial program changes made to evade detection may result in the transformation technique being identified, implying that the adversary must make minimal changes to the program binary.
Abstract:Text simplification is one of the domains in Natural Language Processing (NLP) that offers an opportunity to understand the text in a simplified manner for exploration. However, it is always hard to understand and retrieve knowledge from unstructured text, which is usually in the form of compound and complex sentences. There are state-of-the-art neural network-based methods to simplify the sentences for improved readability while replacing words with plain English substitutes and summarising the sentences and paragraphs. In the Knowledge Graph (KG) creation process from unstructured text, summarising long sentences and substituting words is undesirable since this may lead to information loss. However, KG creation from text requires the extraction of all possible facts (triples) with the same mentions as in the text. In this work, we propose a controlled simplification based on the factual information in a sentence, i.e., triple. We present a classical syntactic dependency-based approach to split and rephrase a compound and complex sentence into a set of simplified sentences. This simplification process will retain the original wording with a simple structure of possible domain facts in each sentence, i.e., triples. The paper also introduces an algorithm to identify and measure a sentence's syntactic complexity (SC), followed by reduction through a controlled syntactic simplification process. Last, an experiment for a dataset re-annotation is also conducted through GPT3; we aim to publish this refined corpus as a resource. This work is accepted and presented in International workshop on Learning with Knowledge Graphs (IWLKG) at WSDM-2023 Conference. The code and data is available at www.github.com/sallmanm/SynSim.