Abstract:In this paper, we proposed a new clustering-based active learning framework, namely Active Learning using a Clustering-based Sampling (ALCS), to address the shortage of labeled data. ALCS employs a density-based clustering approach to explore the cluster structure from the data without requiring exhaustive parameter tuning. A bi-cluster boundary-based sample query procedure is introduced to improve the learning performance for classifying highly overlapped classes. Additionally, we developed an effective diversity exploration strategy to address the redundancy among queried samples. Our experimental results justified the efficacy of the ALCS approach.
Abstract:Coronavirus disease (COVID-19) pandemic has changed various aspects of people's lives and behaviors. At this stage, there are no other ways to control the natural progression of the disease than adopting mitigation strategies such as wearing masks, watching distance, and washing hands. Moreover, at this time of social distancing, social media plays a key role in connecting people and providing a platform for expressing their feelings. In this study, we tap into social media to surveil the uptake of mitigation and detection strategies, and capture issues and concerns about the pandemic. In particular, we explore the research question, "how much can be learned regarding the public uptake of mitigation strategies and concerns about COVID-19 pandemic by using natural language processing on Reddit posts?" After extracting COVID-related posts from the four largest subreddit communities of North Carolina over six months, we performed NLP-based preprocessing to clean the noisy data. We employed a custom Named-entity Recognition (NER) system and a Latent Dirichlet Allocation (LDA) method for topic modeling on a Reddit corpus. We observed that 'mask', 'flu', and 'testing' are the most prevalent named-entities for "Personal Protective Equipment", "symptoms", and "testing" categories, respectively. We also observed that the most discussed topics are related to testing, masks, and employment. The mitigation measures are the most prevalent theme of discussion across all subreddits.
Abstract:Advancements in the digital technologies have enabled researchers to develop a variety of Computational Music applications. Such applications are required to capture, process, and generate data related to music. Therefore, it is important to digitally represent music in a music theoretic and concise manner. Existing approaches for representing music are ineffective in terms of utilizing music theory. In this paper, we address the disjoint of music theory and computational music by developing an opensource representation tool based on music theory. Through the wide range of use cases, we run an analysis on the classical music pieces to show the usefulness of the developed music embedding.