Abstract:Recent advancements in QA with LLM, like GPT-4, have shown limitations in handling complex multi-hop queries. We propose AT-RAG, a novel multistep RAG incorporating topic modeling for efficient document retrieval and reasoning. Using BERTopic, our model dynamically assigns topics to queries, improving retrieval accuracy and efficiency. We evaluated AT-RAG on multihop benchmark datasets QA and a medical case study QA. Results show significant improvements in correctness, completeness, and relevance compared to existing methods. AT-RAG reduces retrieval time while maintaining high precision, making it suitable for general tasks QA and complex domain-specific challenges such as medical QA. The integration of topic filtering and iterative reasoning enables our model to handle intricate queries efficiently, which makes it suitable for applications that require nuanced information retrieval and decision-making.
Abstract:This paper introduces alternators, a novel family of non-Markovian dynamical models for sequences. An alternator features two neural networks: the observation trajectory network (OTN) and the feature trajectory network (FTN). The OTN and the FTN work in conjunction, alternating between outputting samples in the observation space and some feature space, respectively, over a cycle. The parameters of the OTN and the FTN are not time-dependent and are learned via a minimum cross-entropy criterion over the trajectories. Alternators are versatile. They can be used as dynamical latent-variable generative models or as sequence-to-sequence predictors. When alternators are used as generative models, the FTN produces interpretable low-dimensional latent variables that capture the dynamics governing the observations. When alternators are used as sequence-to-sequence predictors, the FTN learns to predict the observed features. In both cases, the OTN learns to produce sequences that match the data. Alternators can uncover the latent dynamics underlying complex sequential data, accurately forecast and impute missing data, and sample new trajectories. We showcase the capabilities of alternators in three applications. We first used alternators to model the Lorenz equations, often used to describe chaotic behavior. We then applied alternators to Neuroscience, to map brain activity to physical activity. Finally, we applied alternators to Climate Science, focusing on sea-surface temperature forecasting. In all our experiments, we found alternators are stable to train, fast to sample from, yield high-quality generated samples and latent variables, and outperform strong baselines such as neural ODEs and diffusion models in the domains we studied.