Abstract:Recent advancements in QA with LLM, like GPT-4, have shown limitations in handling complex multi-hop queries. We propose AT-RAG, a novel multistep RAG incorporating topic modeling for efficient document retrieval and reasoning. Using BERTopic, our model dynamically assigns topics to queries, improving retrieval accuracy and efficiency. We evaluated AT-RAG on multihop benchmark datasets QA and a medical case study QA. Results show significant improvements in correctness, completeness, and relevance compared to existing methods. AT-RAG reduces retrieval time while maintaining high precision, making it suitable for general tasks QA and complex domain-specific challenges such as medical QA. The integration of topic filtering and iterative reasoning enables our model to handle intricate queries efficiently, which makes it suitable for applications that require nuanced information retrieval and decision-making.
Abstract:Financial sector and especially the insurance industry collect vast volumes of text on a daily basis and through multiple channels (their agents, customer care centers, emails, social networks, and web in general). The information collected includes policies, expert and health reports, claims and complaints, results of surveys, and relevant social media posts. It is difficult to effectively extract label, classify, and interpret the essential information from such varied and unstructured material. Therefore, the Insurance Industry is among the ones that can benefit from applying technologies for the intelligent analysis of free text through Natural Language Processing (NLP). In this paper, CRL+, a novel text classification model combining Contrastive Representation Learning (CRL) and Active Learning is proposed to handle the challenge of using semi-supervised learning for text classification. In this method, supervised (CRL) is used to train a RoBERTa transformer model to encode the textual data into a contrastive representation space and then classify using a classification layer. This (CRL)-based transformer model is used as the base model in the proposed Active Learning mechanism to classify all the data in an iterative manner. The proposed model is evaluated using unstructured obituary data with objective to determine the cause of the death from the data. This model is compared with the CRL model and an Active Learning model with the RoBERTa base model. The experiment shows that the proposed method can outperform both methods for this specific task.