Abstract:This work presents the BanglishRev Dataset, the largest e-commerce product review dataset to date for reviews written in Bengali, English, a mixture of both and Banglish, Bengali words written with English alphabets. The dataset comprises of 1.74 million written reviews from 3.2 million ratings information collected from a total of 128k products being sold in online e-commerce platforms targeting the Bengali population. It includes an extensive array of related metadata for each of the reviews including the rating given by the reviewer, date the review was posted and date of purchase, number of likes, dislikes, response from the seller, images associated with the review etc. With sentiment analysis being the most prominent usage of review datasets, experimentation with a binary sentiment analysis model with the review rating serving as an indicator of positive or negative sentiment was conducted to evaluate the effectiveness of the large amount of data presented in BanglishRev for sentiment analysis tasks. A BanglishBERT model is trained on the data from BanglishRev with reviews being considered labeled positive if the rating is greater than 3 and negative if the rating is less than or equal to 3. The model is evaluated by being testing against a previously published manually annotated dataset for e-commerce reviews written in a mixture of Bangla, English and Banglish. The experimental model achieved an exceptional accuracy of 94\% and F1 score of 0.94, demonstrating the dataset's efficacy for sentiment analysis. Some of the intriguing patterns and observations seen within the dataset and future research directions where the dataset can be utilized is also discussed and explored. The dataset can be accessed through https://huggingface.co/datasets/BanglishRev/bangla-english-and-code-mixed-ecommerce-review-dataset.
Abstract:Peer review is the quality assessment of a manuscript by one or more peer experts. Papers are submitted by the authors to scientific venues, and these papers must be reviewed by peers or other authors. The meta-reviewers then gather the peer reviews, assess them, and create a meta-review and decision for each manuscript. As the number of papers submitted to these venues has grown in recent years, it becomes increasingly challenging for meta-reviewers to collect these peer evaluations on time while still maintaining the quality that is the primary goal of meta-review creation. In this paper, we address two peer review aggregation challenges a meta-reviewer faces: paper acceptance decision-making and meta-review generation. Firstly, we propose to automate the process of acceptance decision prediction by applying traditional machine learning algorithms. We use pre-trained word embedding techniques BERT to process the reviews written in natural language text. For the meta-review generation, we propose a transfer learning model based on the T5 model. Experimental results show that BERT is more effective than the other word embedding techniques, and the recommendation score is an important feature for the acceptance decision prediction. In addition, we figure out that fine-tuned T5 outperforms other inference models. Our proposed system takes peer reviews and other relevant features as input to produce a meta-review and make a judgment on whether or not the paper should be accepted. In addition, experimental results show that the acceptance decision prediction system of our task outperforms the existing models, and the meta-review generation task shows significantly improved scores compared to the existing models. For the statistical test, we utilize the Wilcoxon signed-rank test to assess whether there is a statistically significant improvement between paired observations.
Abstract:Sustainable development is a framework for achieving human development goals. It provides natural systems' ability to deliver natural resources and ecosystem services. Sustainable development is crucial for the economy and society. Artificial intelligence (AI) has attracted increasing attention in recent years, with the potential to have a positive influence across many domains. AI is a commonly employed component in the quest for long-term sustainability. In this study, we explore the impact of AI on three pillars of sustainable development: society, environment, and economy, as well as numerous case studies from which we may deduce the impact of AI in a variety of areas, i.e., agriculture, classifying waste, smart water management, and Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, we present AI-based strategies for achieving Sustainable Development Goals (SDGs) which are effective for developing countries like Bangladesh. The framework that we propose may reduce the negative impact of AI and promote the proactiveness of this technology.