Abstract:Peer review is the quality assessment of a manuscript by one or more peer experts. Papers are submitted by the authors to scientific venues, and these papers must be reviewed by peers or other authors. The meta-reviewers then gather the peer reviews, assess them, and create a meta-review and decision for each manuscript. As the number of papers submitted to these venues has grown in recent years, it becomes increasingly challenging for meta-reviewers to collect these peer evaluations on time while still maintaining the quality that is the primary goal of meta-review creation. In this paper, we address two peer review aggregation challenges a meta-reviewer faces: paper acceptance decision-making and meta-review generation. Firstly, we propose to automate the process of acceptance decision prediction by applying traditional machine learning algorithms. We use pre-trained word embedding techniques BERT to process the reviews written in natural language text. For the meta-review generation, we propose a transfer learning model based on the T5 model. Experimental results show that BERT is more effective than the other word embedding techniques, and the recommendation score is an important feature for the acceptance decision prediction. In addition, we figure out that fine-tuned T5 outperforms other inference models. Our proposed system takes peer reviews and other relevant features as input to produce a meta-review and make a judgment on whether or not the paper should be accepted. In addition, experimental results show that the acceptance decision prediction system of our task outperforms the existing models, and the meta-review generation task shows significantly improved scores compared to the existing models. For the statistical test, we utilize the Wilcoxon signed-rank test to assess whether there is a statistically significant improvement between paired observations.
Abstract:Sustainable development is a framework for achieving human development goals. It provides natural systems' ability to deliver natural resources and ecosystem services. Sustainable development is crucial for the economy and society. Artificial intelligence (AI) has attracted increasing attention in recent years, with the potential to have a positive influence across many domains. AI is a commonly employed component in the quest for long-term sustainability. In this study, we explore the impact of AI on three pillars of sustainable development: society, environment, and economy, as well as numerous case studies from which we may deduce the impact of AI in a variety of areas, i.e., agriculture, classifying waste, smart water management, and Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, we present AI-based strategies for achieving Sustainable Development Goals (SDGs) which are effective for developing countries like Bangladesh. The framework that we propose may reduce the negative impact of AI and promote the proactiveness of this technology.
Abstract:Domestic violence is a silent crisis in the developing and underdeveloped countries, though developed countries also remain drowned in the curse of it. In developed countries, victims can easily report and ask help on the contrary in developing and underdeveloped countries victims hardly report the crimes and when it's noticed by the authority it's become too late to save or support the victim. If this kind of problems can be identified at the very beginning of the event and proper actions can be taken, it'll not only help the victim but also reduce the domestic violence crimes. This paper proposed a smart system which can extract victim's situation and provide help according to it. Among of the developing and underdeveloped countries Bangladesh has been chosen though the rate of reporting of domestic violence is low, the extreme report collected by authorities is too high. Case studies collected by different NGO's relating to domestic violence have been studied and applied to extract possible condition for the victims.