Abstract:Detecting disasters in underground mining, such as explosions and structural damage, has been a persistent challenge over the years. This problem is compounded for first responders, who often have no clear information about the extent or nature of the damage within the mine. The poor-light or even total darkness inside the mines makes rescue efforts incredibly difficult, leading to a tragic loss of life. In this paper, we propose a novel instance segmentation method called DIS-Mine, specifically designed to identify disaster-affected areas within underground mines under low-light or poor visibility conditions, aiding first responders in rescue efforts. DIS-Mine is capable of detecting objects in images, even in complete darkness, by addressing challenges such as high noise, color distortions, and reduced contrast. The key innovations of DIS-Mine are built upon four core components: i) Image brightness improvement, ii) Instance segmentation with SAM integration, iii) Mask R-CNN-based segmentation, and iv) Mask alignment with feature matching. On top of that, we have collected real-world images from an experimental underground mine, introducing a new dataset named ImageMine, specifically gathered in low-visibility conditions. This dataset serves to validate the performance of DIS-Mine in realistic, challenging environments. Our comprehensive experiments on the ImageMine dataset, as well as on various other datasets demonstrate that DIS-Mine achieves a superior F1 score of 86.0% and mIoU of 72.0%, outperforming state-of-the-art instance segmentation methods, with at least 15x improvement and up to 80% higher precision in object detection.
Abstract:Alzheimer's disease (AD) is characterized by progressive neurodegeneration and results in detrimental structural changes in human brains. Detecting these changes is crucial for early diagnosis and timely intervention of disease progression. Jacobian maps, derived from spatial normalization in voxel-based morphometry (VBM), have been instrumental in interpreting volume alterations associated with AD. However, the computational cost of generating Jacobian maps limits its clinical adoption. In this study, we explore alternative methods and propose Sobel kernel angle difference (SKAD) as a computationally efficient alternative. SKAD is a derivative operation that offers an optimized approach to quantifying volumetric alterations through localized analysis of the gradients. By efficiently extracting gradient amplitude changes at critical spatial regions, this derivative operation captures regional volume variations Evaluation of SKAD over various medical datasets demonstrates that it is 6.3x faster than Jacobian maps while still maintaining comparable accuracy. This makes it an efficient and competitive approach in neuroimaging research and clinical practice.
Abstract:Machine learning models are increasingly being utilized across various fields and tasks due to their outstanding performance and strong generalization capabilities. Nonetheless, their success hinges on the availability of large volumes of annotated data, the creation of which is often labor-intensive, time-consuming, and expensive. Many active learning (AL) approaches have been proposed to address these challenges, but they often fail to fully leverage the information from the core phases of AL, such as training on the labeled set and querying new unlabeled samples. To bridge this gap, we propose a novel AL approach, Loss Prediction Loss with Gradient Norm (LPLgrad), designed to quantify model uncertainty effectively and improve the accuracy of image classification tasks. LPLgrad operates in two distinct phases: (i) {\em Training Phase} aims to predict the loss for input features by jointly training a main model and an auxiliary model. Both models are trained on the labeled data to maximize the efficiency of the learning process, an aspect often overlooked in previous AL methods. This dual-model approach enhances the ability to extract complex input features and learn intrinsic patterns from the data effectively; (ii) {\em Querying Phase} that quantifies the uncertainty of the main model to guide sample selection. This is achieved by calculating the gradient norm of the entropy values for samples in the unlabeled dataset. Samples with the highest gradient norms are prioritized for labeling and subsequently added to the labeled set, improving the model's performance with minimal labeling effort. Extensive evaluations on real-world datasets demonstrate that the LPLgrad approach outperforms state-of-the-art methods by order of magnitude in terms of accuracy on a small number of labeled images, yet achieving comparable training and querying times in multiple image classification tasks.
Abstract:Deep learning (DL) models are popular across various domains due to their remarkable performance and efficiency. However, their effectiveness relies heavily on large amounts of labeled data, which are often time-consuming and labor-intensive to generate manually. To overcome this challenge, it is essential to develop strategies that reduce reliance on extensive labeled data while preserving model performance. In this paper, we propose FisherMask, a Fisher information-based active learning (AL) approach that identifies key network parameters by masking them based on their Fisher information values. FisherMask enhances batch AL by using Fisher information to select the most critical parameters, allowing the identification of the most impactful samples during AL training. Moreover, Fisher information possesses favorable statistical properties, offering valuable insights into model behavior and providing a better understanding of the performance characteristics within the AL pipeline. Our extensive experiments demonstrate that FisherMask significantly outperforms state-of-the-art methods on diverse datasets, including CIFAR-10 and FashionMNIST, especially under imbalanced settings. These improvements lead to substantial gains in labeling efficiency. Hence serving as an effective tool to measure the sensitivity of model parameters to data samples. Our code is available on \url{https://github.com/sgchr273/FisherMask}.
Abstract:The adoption of connected and automated vehicles (CAVs) has sparked considerable interest across diverse industries, including public transportation, underground mining, and agriculture sectors. However, CAVs' reliance on sensor readings makes them vulnerable to significant threats. Manipulating these readings can compromise CAV network security, posing serious risks for malicious activities. Although several anomaly detection (AD) approaches for CAV networks are proposed, they often fail to: i) detect multiple anomalies in specific sensor(s) with high accuracy or F1 score, and ii) identify the specific sensor being attacked. In response, this paper proposes a novel framework tailored to CAV networks, called CAV-AD, for distinguishing abnormal readings amidst multiple anomaly data while identifying malicious sensors. Specifically, CAV-AD comprises two main components: i) A novel CNN model architecture called optimized omni-scale CNN (O-OS-CNN), which optimally selects the time scale by generating all possible kernel sizes for input time series data; ii) An amplification block to increase the values of anomaly readings, enhancing sensitivity for detecting anomalies. Not only that, but CAV-AD integrates the proposed O-OS-CNN with a Kalman filter to instantly identify the malicious sensors. We extensively train CAV-AD using real-world datasets containing both instant and constant attacks, evaluating its performance in detecting intrusions from multiple anomalies, which presents a more challenging scenario. Our results demonstrate that CAV-AD outperforms state-of-the-art methods, achieving an average accuracy of 98% and an average F1 score of 89\%, while accurately identifying the malicious sensors.
Abstract:In the ambitious realm of space AI, the integration of federated learning (FL) with low Earth orbit (LEO) satellite constellations holds immense promise. However, many challenges persist in terms of feasibility, learning efficiency, and convergence. These hurdles stem from the bottleneck in communication, characterized by sporadic and irregular connectivity between LEO satellites and ground stations, coupled with the limited computation capability of satellite edge computing (SEC). This paper proposes a novel FL-SEC framework that empowers LEO satellites to execute large-scale machine learning (ML) tasks onboard efficiently. Its key components include i) personalized learning via divide-and-conquer, which identifies and eliminates redundant satellite images and converts complex multi-class classification problems to simple binary classification, enabling rapid and energy-efficient training of lightweight ML models suitable for IoT/edge devices on satellites; ii) orbital model retraining, which generates an aggregated "orbital model" per orbit and retrains it before sending to the ground station, significantly reducing the required communication rounds. We conducted experiments using Jetson Nano, an edge device closely mimicking the limited compute on LEO satellites, and a real satellite dataset. The results underscore the effectiveness of our approach, highlighting SEC's ability to run lightweight ML models on real and high-resolution satellite imagery. Our approach dramatically reduces FL convergence time by nearly 30 times, and satellite energy consumption down to as low as 1.38 watts, all while maintaining an exceptional accuracy of up to 96%.
Abstract:Space AI has become increasingly important and sometimes even necessary for government, businesses, and society. An active research topic under this mission is integrating federated learning (FL) with satellite communications (SatCom) so that numerous low Earth orbit (LEO) satellites can collaboratively train a machine learning model. However, the special communication environment of SatCom leads to a very slow FL training process up to days and weeks. This paper proposes NomaFedHAP, a novel FL-SatCom approach tailored to LEO satellites, that (1) utilizes high-altitude platforms (HAPs) as distributed parameter servers (PS) to enhance satellite visibility, and (2) introduces non-orthogonal multiple access (NOMA) into LEO to enable fast and bandwidth-efficient model transmissions. In addition, NomaFedHAP includes (3) a new communication topology that exploits HAPs to bridge satellites among different orbits to mitigate the Doppler shift, and (4) a new FL model aggregation scheme that optimally balances models between different orbits and shells. Moreover, we (5) derive a closed-form expression of the outage probability for satellites in near and far shells, as well as for the entire system. Our extensive simulations have validated the mathematical analysis and demonstrated the superior performance of NomaFedHAP in achieving fast and efficient FL model convergence with high accuracy as compared to the state-of-the-art.
Abstract:Satellite technologies have advanced drastically in recent years, leading to a heated interest in launching small satellites into low Earth orbit (LEOs) to collect massive data such as satellite imagery. Downloading these data to a ground station (GS) to perform centralized learning to build an AI model is not practical due to the limited and expensive bandwidth. Federated learning (FL) offers a potential solution but will incur a very large convergence delay due to the highly sporadic and irregular connectivity between LEO satellites and GS. In addition, there are significant security and privacy risks where eavesdroppers or curious servers/satellites may infer raw data from satellites' model parameters transmitted over insecure communication channels. To address these issues, this paper proposes FedSecure, a secure FL approach designed for LEO constellations, which consists of two novel components: (1) decentralized key generation that protects satellite data privacy using a functional encryption scheme, and (2) on-orbit model forwarding and aggregation that generates a partial global model per orbit to minimize the idle waiting time for invisible satellites to enter the visible zone of the GS. Our analysis and results show that FedSecure preserves the privacy of each satellite's data against eavesdroppers, a curious server, or curious satellites. It is lightweight with significantly lower communication and computation overheads than other privacy-preserving FL aggregation approaches. It also reduces convergence delay drastically from days to only a few hours, yet achieving high accuracy of up to 85.35% using realistic satellite images.
Abstract:Brain-Computer Interface (BCI) initially gained attention for developing applications that aid physically impaired individuals. Recently, the idea of integrating BCI with Augmented Reality (AR) emerged, which uses BCI not only to enhance the quality of life for individuals with disabilities but also to develop mainstream applications for healthy users. One commonly used BCI signal pattern is the Steady-state Visually-evoked Potential (SSVEP), which captures the brain's response to flickering visual stimuli. SSVEP-based BCI-AR applications enable users to express their needs/wants by simply looking at corresponding command options. However, individuals are different in brain signals and thus require per-subject SSVEP recognition. Moreover, muscle movements and eye blinks interfere with brain signals, and thus subjects are required to remain still during BCI experiments, which limits AR engagement. In this paper, we (1) propose a simple adaptive ensemble classification system that handles the inter-subject variability, (2) present a simple BCI-AR framework that supports the development of a wide range of SSVEP-based BCI-AR applications, and (3) evaluate the performance of our ensemble algorithm in an SSVEP-based BCI-AR application with head rotations which has demonstrated robustness to the movement interference. Our testing on multiple subjects achieved a mean accuracy of 80\% on a PC and 77\% using the HoloLens AR headset, both of which surpass previous studies that incorporate individual classifiers and head movements. In addition, our visual stimulation time is 5 seconds which is relatively short. The statistically significant results show that our ensemble classification approach outperforms individual classifiers in SSVEP-based BCIs.
Abstract:A Low Earth orbit (LEO) satellite constellation consists of a large number of small satellites traveling in space with high mobility and collecting vast amounts of mobility data such as cloud movement for weather forecast, large herds of animals migrating across geo-regions, spreading of forest fires, and aircraft tracking. Machine learning can be utilized to analyze these mobility data to address global challenges, and Federated Learning (FL) is a promising approach because it eliminates the need for transmitting raw data and hence is both bandwidth and privacy-friendly. However, FL requires many communication rounds between clients (satellites) and the parameter server (PS), leading to substantial delays of up to several days in LEO constellations. In this paper, we propose a novel one-shot FL approach for LEO satellites, called LEOShot, that needs only a single communication round to complete the entire learning process. LEOShot comprises three processes: (i) synthetic data generation, (ii) knowledge distillation, and (iii) virtual model retraining. We evaluate and benchmark LEOShot against the state of the art and the results show that it drastically expedites FL convergence by more than an order of magnitude. Also surprisingly, despite the one-shot nature, its model accuracy is on par with or even outperforms regular iterative FL schemes by a large margin