Abstract:Predicting loan eligibility with high accuracy remains a significant challenge in the finance sector. Accurate predictions enable financial institutions to make informed decisions, mitigate risks, and effectively adapt services to meet customer needs. However, the complexity and the high-dimensional nature of financial data have always posed significant challenges to achieving this level of precision. To overcome these issues, we propose a novel approach that employs Quantum Machine Learning (QML) for Loan Eligibility Prediction using Quantum Neural Networks (LEP-QNN).Our innovative approach achieves an accuracy of 98% in predicting loan eligibility from a single, comprehensive dataset. This performance boost is attributed to the strategic implementation of a dropout mechanism within the quantum circuit, aimed at minimizing overfitting and thereby improving the model's predictive reliability. In addition, our exploration of various optimizers leads to identifying the most efficient setup for our LEP-QNN framework, optimizing its performance. We also rigorously evaluate the resilience of LEP-QNN under different quantum noise scenarios, ensuring its robustness and dependability for quantum computing environments. This research showcases the potential of QML in financial predictions and establishes a foundational guide for advancing QML technologies, marking a step towards developing advanced, quantum-driven financial decision-making tools.
Abstract:This study introduces the Quantum Federated Neural Network for Financial Fraud Detection (QFNN-FFD), a cutting-edge framework merging Quantum Machine Learning (QML) and quantum computing with Federated Learning (FL) to innovate financial fraud detection. Using quantum technologies' computational power and FL's data privacy, QFNN-FFD presents a secure, efficient method for identifying fraudulent transactions. Implementing a dual-phase training model across distributed clients surpasses existing methods in performance. QFNN-FFD significantly improves fraud detection and ensures data confidentiality, marking a significant advancement in fintech solutions and establishing a new standard for privacy-focused fraud detection.
Abstract:In this study, we explore the innovative domain of Quantum Federated Learning (QFL) as a framework for training Quantum Machine Learning (QML) models via distributed networks. Conventional machine learning models frequently grapple with issues about data privacy and the exposure of sensitive information. Our proposed Federated Quantum Neural Network (FedQNN) framework emerges as a cutting-edge solution, integrating the singular characteristics of QML with the principles of classical federated learning. This work thoroughly investigates QFL, underscoring its capability to secure data handling in a distributed environment and facilitate cooperative learning without direct data sharing. Our research corroborates the concept through experiments across varied datasets, including genomics and healthcare, thereby validating the versatility and efficacy of our FedQNN framework. The results consistently exceed 86% accuracy across three distinct datasets, proving its suitability for conducting various QML tasks. Our research not only identifies the limitations of classical paradigms but also presents a novel framework to propel the field of QML into a new era of secure and collaborative innovation.
Abstract:This study addresses the urgent need for improved prostate cancer detection methods by harnessing the power of advanced technological solutions. We introduce the application of Quantum Support Vector Machine (QSVM) to this critical healthcare challenge, showcasing an enhancement in diagnostic performance over the classical Support Vector Machine (SVM) approach. Our study not only outlines the remarkable improvements in diagnostic performance made by QSVM over the classic SVM technique, but it delves into the advancements brought about by the quantum feature map architecture, which has been carefully identified and evaluated, ensuring it aligns seamlessly with the unique characteristics of our prostate cancer dataset. This architecture succeded in creating a distinct feature space, enabling the detection of complex, non-linear patterns in the data. The findings reveal not only a comparable accuracy with classical SVM ($92\%$) but also a $7.14\%$ increase in sensitivity and a notably high F1-Score ($93.33\%$). This study's important combination of quantum computing in medical diagnostics marks a pivotal step forward in cancer detection, offering promising implications for the future of healthcare technology.
Abstract:Integrating Quantum Convolutional Neural Networks (QCNNs) into medical diagnostics represents a transformative advancement in the classification of brain tumors. This research details a high-precision design and execution of a QCNN model specifically tailored to identify and classify brain cancer images. Our proposed QCNN architecture and algorithm have achieved an exceptional classification accuracy of 99.67%, demonstrating the model's potential as a powerful tool for clinical applications. The remarkable performance of our model underscores its capability to facilitate rapid and reliable brain tumor diagnoses, potentially streamlining the decision-making process in treatment planning. These findings strongly support the further investigation and application of quantum computing and quantum machine learning methodologies in medical imaging, suggesting a future where quantum-enhanced diagnostics could significantly elevate the standard of patient care and treatment outcomes.
Abstract:Financial fraud detection is essential for preventing significant financial losses and maintaining the reputation of financial institutions. However, conventional methods of detecting financial fraud have limited effectiveness, necessitating the need for new approaches to improve detection rates. In this paper, we propose a novel approach for detecting financial fraud using Quantum Graph Neural Networks (QGNNs). QGNNs are a type of neural network that can process graph-structured data and leverage the power of Quantum Computing (QC) to perform computations more efficiently than classical neural networks. Our approach uses Variational Quantum Circuits (VQC) to enhance the performance of the QGNN. In order to evaluate the efficiency of our proposed method, we compared the performance of QGNNs to Classical Graph Neural Networks using a real-world financial fraud detection dataset. The results of our experiments showed that QGNNs achieved an AUC of $0.85$, which outperformed classical GNNs. Our research highlights the potential of QGNNs and suggests that QGNNs are a promising new approach for improving financial fraud detection.
Abstract:Quantum State Tomography (QST) is a fundamental technique in Quantum Information Processing (QIP) for reconstructing unknown quantum states. However, the conventional QST methods are limited by the number of measurements required, which makes them impractical for large-scale quantum systems. To overcome this challenge, we propose the integration of Quantum Machine Learning (QML) techniques to enhance the efficiency of QST. In this paper, we conduct a comprehensive investigation into various approaches for QST, encompassing both classical and quantum methodologies; We also implement different QML approaches for QST and demonstrate their effectiveness on various simulated and experimental quantum systems, including multi-qubit networks. Our results show that our QML-based QST approach can achieve high fidelity (98%) with significantly fewer measurements than conventional methods, making it a promising tool for practical QIP applications.
Abstract:In this research, a comparative study of four Quantum Machine Learning (QML) models was conducted for fraud detection in finance. We proved that the Quantum Support Vector Classifier model achieved the highest performance, with F1 scores of 0.98 for fraud and non-fraud classes. Other models like the Variational Quantum Classifier, Estimator Quantum Neural Network (QNN), and Sampler QNN demonstrate promising results, propelling the potential of QML classification for financial applications. While they exhibit certain limitations, the insights attained pave the way for future enhancements and optimisation strategies. However, challenges exist, including the need for more efficient Quantum algorithms and larger and more complex datasets. The article provides solutions to overcome current limitations and contributes new insights to the field of Quantum Machine Learning in fraud detection, with important implications for its future development.
Abstract:The quantum perceptron, the variational circuit, and the Grover algorithm have been proposed as promising components for quantum machine learning. This paper presents a new quantum perceptron that combines the quantum variational circuit and the Grover algorithm. However, this does not guarantee that this quantum variational perceptron with Grover's algorithm (QVPG) will have any advantage over its quantum variational (QVP) and classical counterparts. Here, we examine the performance of QVP and QVP-G by computing their loss function and analyzing their accuracy on the classification task, then comparing these two quantum models to the classical perceptron (CP). The results show that our two quantum models are more efficient than CP, and our novel suggested model QVP-G outperforms the QVP, demonstrating that the Grover can be applied to the classification task and even makes the model more accurate, besides the unstructured search problems.
Abstract:Quantum machine learning (QML) has witnessed immense progress recently, with quantum support vector machines (QSVMs) emerging as a promising model. This paper focuses on the two existing QSVM methods: quantum kernel SVM (QK-SVM) and quantum variational SVM (QV-SVM). While both have yielded impressive results, we present a novel approach that synergizes the strengths of QK-SVM and QV-SVM to enhance accuracy. Our proposed model, quantum variational kernel SVM (QVK-SVM), leverages the quantum kernel and quantum variational algorithm. We conducted extensive experiments on the Iris dataset and observed that QVK-SVM outperforms both existing models in terms of accuracy, loss, and confusion matrix indicators. Our results demonstrate that QVK-SVM holds tremendous potential as a reliable and transformative tool for QML applications. Hence, we recommend its adoption in future QML research endeavors.