Abstract:Large Language Models (LLMs) are increasingly deployed as automated tutors to address educator shortages; however, they often fail at pedagogical reasoning, frequently validating incorrect student solutions (sycophancy) or providing overly direct answers that hinder learning. We introduce Hierarchical Pedagogical Oversight (HPO), a framework that adapts structured adversarial synthesis to educational assessment. Unlike cooperative multi-agent systems that often drift toward superficial consensus, HPO enforces a dialectical separation of concerns: specialist agents first distill dialogue context, which then grounds a moderated, five-act debate between opposing pedagogical critics. We evaluate this framework on the MRBench dataset of 1,214 middle-school mathematics dialogues. Our 8B-parameter model achieves a Macro F1 of 0.845, outperforming GPT-4o (0.812) by 3.3% while using 20 times fewer parameters. These results establish adversarial reasoning as a critical mechanism for deploying reliable, low-compute pedagogical oversight in resource-constrained environments.
Abstract:Financial fraud detection is essential for preventing significant financial losses and maintaining the reputation of financial institutions. However, conventional methods of detecting financial fraud have limited effectiveness, necessitating the need for new approaches to improve detection rates. In this paper, we propose a novel approach for detecting financial fraud using Quantum Graph Neural Networks (QGNNs). QGNNs are a type of neural network that can process graph-structured data and leverage the power of Quantum Computing (QC) to perform computations more efficiently than classical neural networks. Our approach uses Variational Quantum Circuits (VQC) to enhance the performance of the QGNN. In order to evaluate the efficiency of our proposed method, we compared the performance of QGNNs to Classical Graph Neural Networks using a real-world financial fraud detection dataset. The results of our experiments showed that QGNNs achieved an AUC of $0.85$, which outperformed classical GNNs. Our research highlights the potential of QGNNs and suggests that QGNNs are a promising new approach for improving financial fraud detection.