Abstract:Federated learning (FL) is a promising approach for enhancing data privacy preservation, particularly for authentication systems. However, limited round communications, scarce representation, and scalability pose significant challenges to its deployment, hindering its full potential. In this paper, we propose 'ProtoFL', Prototypical Representation Distillation based unsupervised Federated Learning to enhance the representation power of a global model and reduce round communication costs. Additionally, we introduce a local one-class classifier based on normalizing flows to improve performance with limited data. Our study represents the first investigation of using FL to improve one-class classification performance. We conduct extensive experiments on five widely used benchmarks, namely MNIST, CIFAR-10, CIFAR-100, ImageNet-30, and Keystroke-Dynamics, to demonstrate the superior performance of our proposed framework over previous methods in the literature.
Abstract:Previous anti-spoofing methods have used either pseudo maps or user-defined labels, and the performance of each approach depends on the accuracy of the third party networks generating pseudo maps and the way in which the users define the labels. In this paper, we propose a liveness score-based regression network for overcoming the dependency on third party networks and users. First, we introduce a new labeling technique, called pseudo-discretized label encoding for generating discretized labels indicating the amount of information related to real images. Secondly, we suggest the expected liveness score based on a regression network for training the difference between the proposed supervision and the expected liveness score. Finally, extensive experiments were conducted on four face anti-spoofing benchmarks to verify our proposed method on both intra-and cross-dataset tests. The experimental results show our approach outperforms previous methods.