Abstract:Sequential recommendation (SR) learns user preferences based on their historical interaction sequences and provides personalized suggestions. In real-world scenarios, most users can only interact with a handful of items, while the majority of items are seldom consumed. This pervasive long-tail challenge limits the model's ability to learn user preferences. Despite previous efforts to enrich tail items/users with knowledge from head parts or improve tail learning through additional contextual information, they still face the following issues: 1) They struggle to improve the situation where interactions of tail users/items are scarce, leading to incomplete preferences learning for the tail parts. 2) Existing methods often degrade overall or head parts performance when improving accuracy for tail users/items, thereby harming the user experience. We propose Tail-Aware Data Augmentation (TADA) for long-tail sequential recommendation, which enhances the interaction frequency for tail items/users while maintaining head performance, thereby promoting the model's learning capabilities for the tail. Specifically, we first capture the co-occurrence and correlation among low-popularity items by a linear model. Building upon this, we design two tail-aware augmentation operators, T-Substitute and T-Insert. The former replaces the head item with a relevant item, while the latter utilizes co-occurrence relationships to extend the original sequence by incorporating both head and tail items. The augmented and original sequences are mixed at the representation level to preserve preference knowledge. We further extend the mix operation across different tail-user sequences and augmented sequences to generate richer augmented samples, thereby improving tail performance. Comprehensive experiments demonstrate the superiority of our method. The codes are provided at https://github.com/KingGugu/TADA.
Abstract:Data augmentation has become a promising method of mitigating data sparsity in sequential recommendation. Existing methods generate new yet effective data during model training to improve performance. However, deploying them requires retraining, architecture modification, or introducing additional learnable parameters. The above steps are time-consuming and costly for well-trained models, especially when the model scale becomes large. In this work, we explore the test-time augmentation (TTA) for sequential recommendation, which augments the inputs during the model inference and then aggregates the model's predictions for augmented data to improve final accuracy. It avoids significant time and cost overhead from loss calculation and backward propagation. We first experimentally disclose the potential of existing augmentation operators for TTA and find that the Mask and Substitute consistently achieve better performance. Further analysis reveals that these two operators are effective because they retain the original sequential pattern while adding appropriate perturbations. Meanwhile, we argue that these two operators still face time-consuming item selection or interference information from mask tokens. Based on the analysis and limitations, we present TNoise and TMask. The former injects uniform noise into the original representation, avoiding the computational overhead of item selection. The latter blocks mask token from participating in model calculations or directly removes interactions that should have been replaced with mask tokens. Comprehensive experiments demonstrate the effectiveness, efficiency, and generalizability of our method. We provide an anonymous implementation at https://github.com/KingGugu/TTA4SR.