Abstract:Human head pose estimation is an essential problem in facial analysis in recent years that has a lot of computer vision applications such as gaze estimation, virtual reality, and driver assistance. Because of the importance of the head pose estimation problem, it is necessary to design a compact model to resolve this task in order to reduce the computational cost when deploying on facial analysis-based applications such as large camera surveillance systems, AI cameras while maintaining accuracy. In this work, we propose a lightweight model that effectively addresses the head pose estimation problem. Our approach has two main steps. 1) We first train many teacher models on the synthesis dataset - 300W-LPA to get the head pose pseudo labels. 2) We design an architecture with the ResNet18 backbone and train our proposed model with the ensemble of these pseudo labels via the knowledge distillation process. To evaluate the effectiveness of our model, we use AFLW-2000 and BIWI - two real-world head pose datasets. Experimental results show that our proposed model significantly improves the accuracy in comparison with the state-of-the-art head pose estimation methods. Furthermore, our model has the real-time speed of $\sim$300 FPS when inferring on Tesla V100.
Abstract:Hamilton-Jacobi reachability analysis is a powerful technique used to verify the safety of autonomous systems. This method is very good at handling non-linear system dynamics with disturbances and flexible set representations. A drawback to this approach is that it suffers from the curse of dimensionality, which prevents real-time deployment on safety-critical systems. In this paper, we show that a customized hardware design on a Field Programmable Gate Array (FPGA) could accelerate 4D grid-based Hamilton-Jacobi (HJ) reachability analysis up to 16 times compared to an optimized implementation and 142 times compared to MATLAB ToolboxLS on a 16-thread CPU. Our design can overcome the complex data access pattern while taking advantage of the parallel nature of the HJ PDE computation. Because of this, we are able to achieve real-time formal verification with a 4D car model by re-solving the HJ PDE at a frequency of 5Hz on the FPGA as the environment changes. The latency of our computation is deterministic, which is crucial for safetycritical systems. Our approach presented here can be applied to different systems dynamics, and moreover, potentially leveraged for higher dimensions systems. We also demonstrate obstacle avoidance with a robot car in a changing environment.