Abstract:Human head pose estimation is an essential problem in facial analysis in recent years that has a lot of computer vision applications such as gaze estimation, virtual reality, and driver assistance. Because of the importance of the head pose estimation problem, it is necessary to design a compact model to resolve this task in order to reduce the computational cost when deploying on facial analysis-based applications such as large camera surveillance systems, AI cameras while maintaining accuracy. In this work, we propose a lightweight model that effectively addresses the head pose estimation problem. Our approach has two main steps. 1) We first train many teacher models on the synthesis dataset - 300W-LPA to get the head pose pseudo labels. 2) We design an architecture with the ResNet18 backbone and train our proposed model with the ensemble of these pseudo labels via the knowledge distillation process. To evaluate the effectiveness of our model, we use AFLW-2000 and BIWI - two real-world head pose datasets. Experimental results show that our proposed model significantly improves the accuracy in comparison with the state-of-the-art head pose estimation methods. Furthermore, our model has the real-time speed of $\sim$300 FPS when inferring on Tesla V100.
Abstract:Facial expression classification is a kind of image classification and it has received much attention, in recent years. There are many approaches to solve these problems with aiming to increase efficient classification. One of famous suggestions is described as first step, project image to different spaces; second step, in each of these spaces, images are classified into responsive class and the last step, combine the above classified results into the final result. The advantages of this approach are to reflect fulfill and multiform of image classified. In this paper, we use 2D-PCA and its variants to project the pattern or image into different spaces with different grouping strategies. Then we develop a model which combines many Neural Networks applied for the last step. This model evaluates the reliability of each space and gives the final classification conclusion. Our model links many Neural Networks together, so we call it Multi Artificial Neural Network (MANN). We apply our proposal model for 6 basic facial expressions on JAFFE database consisting 213 images posed by 10 Japanese female models.