Abstract:Generating preferred images using generative adversarial networks (GANs) is challenging owing to the high-dimensional nature of latent space. In this study, we propose a novel approach that uses simple user-swipe interactions to generate preferred images for users. To effectively explore the latent space with only swipe interactions, we apply principal component analysis to the latent space of the StyleGAN, creating meaningful subspaces. We use a multi-armed bandit algorithm to decide the dimensions to explore, focusing on the preferences of the user. Experiments show that our method is more efficient in generating preferred images than the baseline methods. Furthermore, changes in preferred images during image generation or the display of entirely different image styles were observed to provide new inspirations, subsequently altering user preferences. This highlights the dynamic nature of user preferences, which our proposed approach recognizes and enhances.
Abstract:Emergence and causality are two fundamental concepts for understanding complex systems. They are interconnected. On one hand, emergence refers to the phenomenon where macroscopic properties cannot be solely attributed to the cause of individual properties. On the other hand, causality can exhibit emergence, meaning that new causal laws may arise as we increase the level of abstraction. Causal emergence theory aims to bridge these two concepts and even employs measures of causality to quantify emergence. This paper provides a comprehensive review of recent advancements in quantitative theories and applications of causal emergence. Two key problems are addressed: quantifying causal emergence and identifying it in data. Addressing the latter requires the use of machine learning techniques, thus establishing a connection between causal emergence and artificial intelligence. We highlighted that the architectures used for identifying causal emergence are shared by causal representation learning, causal model abstraction, and world model-based reinforcement learning. Consequently, progress in any of these areas can benefit the others. Potential applications and future perspectives are also discussed in the final section of the review.
Abstract:Modelling complex dynamical systems in a data-driven manner is challenging due to the presence of emergent behaviors and properties that cannot be directly captured by micro-level observational data. Therefore, it is crucial to develop a model that can effectively capture emergent dynamics at the macro-level and quantify emergence based on the available data. Drawing inspiration from the theory of causal emergence, this paper introduces a machine learning framework aimed at learning macro-dynamics within an emergent latent space. The framework achieves this by maximizing the effective information (EI) to obtain a macro-dynamics model with stronger causal effects. Experimental results on both simulated and real data demonstrate the effectiveness of the proposed framework. Not only does it successfully capture emergent patterns, but it also learns the coarse-graining strategy and quantifies the degree of causal emergence in the data. Furthermore, experiments conducted on environments different from the training dataset highlight the superior generalization ability of our model.
Abstract:Iterative machine teaching is a method for selecting an optimal teaching example that enables a student to efficiently learn a target concept at each iteration. Existing studies on iterative machine teaching are based on supervised machine learning and assume that there are teachers who know the true answers of all teaching examples. In this study, we consider an unsupervised case where such teachers do not exist; that is, we cannot access the true answer of any teaching example. Students are given a teaching example at each iteration, but there is no guarantee if the corresponding label is correct. Recent studies on crowdsourcing have developed methods for estimating the true answers from crowdsourcing responses. In this study, we apply these to iterative machine teaching for estimating the true labels of teaching examples along with student models that are used for teaching. Our method supports the collaborative learning of students without teachers. The experimental results show that the teaching performance of our method is particularly effective for low-level students in particular.