Abstract:Despite the successful application of convolutional neural networks (CNNs) in object detection tasks, their efficiency in detecting faults from freight train images remains inadequate for implementation in real-world engineering scenarios. Existing modeling shortcomings of spatial invariance and pooling layers in conventional CNNs often ignore the neglect of crucial global information, resulting in error localization for fault objection tasks of freight trains. To solve these problems, we design a spatial-wise dynamic distillation framework based on multi-layer perceptron (MLP) for visual fault detection of freight trains. We initially present the axial shift strategy, which allows the MLP-like architecture to overcome the challenge of spatial invariance and effectively incorporate both local and global cues. We propose a dynamic distillation method without a pre-training teacher, including a dynamic teacher mechanism that can effectively eliminate the semantic discrepancy with the student model. Such an approach mines more abundant details from lower-level feature appearances and higher-level label semantics as the extra supervision signal, which utilizes efficient instance embedding to model the global spatial and semantic information. In addition, the proposed dynamic teacher can jointly train with students to further enhance the distillation efficiency. Extensive experiments executed on six typical fault datasets reveal that our approach outperforms the current state-of-the-art detectors and achieves the highest accuracy with real-time detection at a lower computational cost. The source code will be available at \url{https://github.com/MVME-HBUT/SDD-FTI-FDet}.
Abstract:Efficient visual fault detection of freight trains is a critical part of ensuring the safe operation of railways under the restricted hardware environment. Although deep learning-based approaches have excelled in object detection, the efficiency of freight train fault detection is still insufficient to apply in real-world engineering. This paper proposes a heterogeneous self-distillation framework to ensure detection accuracy and speed while satisfying low resource requirements. The privileged information in the output feature knowledge can be transferred from the teacher to the student model through distillation to boost performance. We first adopt a lightweight backbone to extract features and generate a new heterogeneous knowledge neck. Such neck models positional information and long-range dependencies among channels through parallel encoding to optimize feature extraction capabilities. Then, we utilize the general distribution to obtain more credible and accurate bounding box estimates. Finally, we employ a novel loss function that makes the network easily concentrate on values near the label to improve learning efficiency. Experiments on four fault datasets reveal that our framework can achieve over 37 frames per second and maintain the highest accuracy in comparison with traditional distillation approaches. Moreover, compared to state-of-the-art methods, our framework demonstrates more competitive performance with lower memory usage and the smallest model size.