Abstract:Obstacle avoidance for unmanned aerial vehicles like quadrotors is a popular research topic. Most existing research focuses only on static environments, and obstacle avoidance in environments with multiple dynamic obstacles remains challenging. This paper proposes a novel deep-reinforcement learning-based approach for the quadrotors to navigate through highly dynamic environments. We propose a lidar data encoder to extract obstacle information from the massive point cloud data from the lidar. Multi frames of historical scans will be compressed into a 2-dimension obstacle map while maintaining the obstacle features required. An end-to-end deep neural network is trained to extract the kinematics of dynamic and static obstacles from the obstacle map, and it will generate acceleration commands to the quadrotor to control it to avoid these obstacles. Our approach contains perception and navigating functions in a single neural network, which can change from a navigating state into a hovering state without mode switching. We also present simulations and real-world experiments to show the effectiveness of our approach while navigating in highly dynamic cluttered environments.
Abstract:Obstacle avoidance for Unmanned Aerial Vehicles (UAVs) in cluttered environments is significantly challenging. Existing obstacle avoidance for UAVs either focuses on fully static environments or static environments with only a few dynamic objects. In this paper, we take the initiative to consider the obstacle avoidance of UAVs in dynamic cluttered environments in which dynamic objects are the dominant objects. This type of environment poses significant challenges to both perception and planning. Multiple dynamic objects possess various motions, making it extremely difficult to estimate and predict their motions using one motion model. The planning must be highly efficient to avoid cluttered dynamic objects. This paper proposes Fast and Adaptive Perception and Planning (FAPP) for UAVs flying in complex dynamic cluttered environments. A novel and efficient point cloud segmentation strategy is proposed to distinguish static and dynamic objects. To address multiple dynamic objects with different motions, an adaptive estimation method with covariance adaptation is proposed to quickly and accurately predict their motions. Our proposed trajectory optimization algorithm is highly efficient, enabling it to avoid fast objects. Furthermore, an adaptive re-planning method is proposed to address the case when the trajectory optimization cannot find a feasible solution, which is common for dynamic cluttered environments. Extensive validations in both simulation and real-world experiments demonstrate the effectiveness of our proposed system for highly dynamic and cluttered environments.
Abstract:This paper addresses the problem of traversing through unknown, tilted, and narrow gaps for quadrotors using Deep Reinforcement Learning (DRL). Previous learning-based methods relied on accurate knowledge of the environment, including the gap's pose and size. In contrast, we integrate onboard sensing and detect the gap from a single onboard camera. The training problem is challenging for two reasons: a precise and robust whole-body planning and control policy is required for variable-tilted and narrow gaps, and an effective Sim2Real method is needed to successfully conduct real-world experiments. To this end, we propose a learning framework for agile gap traversal flight, which successfully trains the vehicle to traverse through the center of the gap at an approximate attitude to the gap with aggressive tilted angles. The policy trained only in a simulation environment can be transferred into different domains with fine-tuning while maintaining the success rate. Our proposed framework, which integrates onboard sensing and a neural network controller, achieves a success rate of 84.51% in real-world experiments, with gap orientations up to 60deg. To the best of our knowledge, this is the first paper that performs the learning-based variable-tilted narrow gap traversal flight in the real world, without prior knowledge of the environment.