Abstract:Recent unsupervised person re-identification (re-ID) methods achieve high performance by leveraging fine-grained local context. These methods are referred to as part-based methods. However, most part-based methods obtain local contexts through horizontal division, which suffer from misalignment due to various human poses. Additionally, the misalignment of semantic information in part features restricts the use of metric learning, thus affecting the effectiveness of part-based methods. The two issues mentioned above result in the under-utilization of part features in part-based methods. We introduce the Spatial Cascaded Clustering and Weighted Memory (SCWM) method to address these challenges. SCWM aims to parse and align more accurate local contexts for different human body parts while allowing the memory module to balance hard example mining and noise suppression. Specifically, we first analyze the foreground omissions and spatial confusions issues in the previous method. Then, we propose foreground and space corrections to enhance the completeness and reasonableness of the human parsing results. Next, we introduce a weighted memory and utilize two weighting strategies. These strategies address hard sample mining for global features and enhance noise resistance for part features, which enables better utilization of both global and part features. Extensive experiments on Market-1501 and MSMT17 validate the proposed method's effectiveness over many state-of-the-art methods.
Abstract:Tone mapping aims to convert high dynamic range (HDR) images to low dynamic range (LDR) representations, a critical task in the camera imaging pipeline. In recent years, 3-Dimensional LookUp Table (3D LUT) based methods have gained attention due to their ability to strike a favorable balance between enhancement performance and computational efficiency. However, these methods often fail to deliver satisfactory results in local areas since the look-up table is a global operator for tone mapping, which works based on pixel values and fails to incorporate crucial local information. To this end, this paper aims to address this issue by exploring a novel strategy that integrates global and local operators by utilizing closed-form Laplacian pyramid decomposition and reconstruction. Specifically, we employ image-adaptive 3D LUTs to manipulate the tone in the low-frequency image by leveraging the specific characteristics of the frequency information. Furthermore, we utilize local Laplacian filters to refine the edge details in the high-frequency components in an adaptive manner. Local Laplacian filters are widely used to preserve edge details in photographs, but their conventional usage involves manual tuning and fixed implementation within camera imaging pipelines or photo editing tools. We propose to learn parameter value maps progressively for local Laplacian filters from annotated data using a lightweight network. Our model achieves simultaneous global tone manipulation and local edge detail preservation in an end-to-end manner. Extensive experimental results on two benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art methods.