Abstract:We address the challenge of estimating the learning rate for adaptive gradient methods used in training deep neural networks. While several learning-rate-free approaches have been proposed, they are typically tailored for steepest descent. However, although steepest descent methods offer an intuitive approach to finding minima, many deep learning applications require adaptive gradient methods to achieve faster convergence. In this paper, we interpret adaptive gradient methods as steepest descent applied on parameter-scaled networks, proposing learning-rate-free adaptive gradient methods. Experimental results verify the effectiveness of this approach, demonstrating comparable performance to hand-tuned learning rates across various scenarios. This work extends the applicability of learning-rate-free methods, enhancing training with adaptive gradient methods.
Abstract:Although contrastive learning methods have shown prevailing performance on a variety of representation learning tasks, they encounter difficulty when the training dataset is long-tailed. Many researchers have combined contrastive learning and a logit adjustment technique to address this problem, but the combinations are done ad-hoc and a theoretical background has not yet been provided. The goal of this paper is to provide the background and further improve the performance. First, we show that the fundamental reason contrastive learning methods struggle with long-tailed tasks is that they try to maximize the mutual information maximization between latent features and input data. As ground-truth labels are not considered in the maximization, they are not able to address imbalances between class labels. Rather, we interpret the long-tailed recognition task as a mutual information maximization between latent features and ground-truth labels. This approach integrates contrastive learning and logit adjustment seamlessly to derive a loss function that shows state-of-the-art performance on long-tailed recognition benchmarks. It also demonstrates its efficacy in image segmentation tasks, verifying its versatility beyond image classification.