Abstract:Respiratory sound classification (RSC) is challenging due to varied acoustic signatures, primarily influenced by patient demographics and recording environments. To address this issue, we introduce a text-audio multimodal model that utilizes metadata of respiratory sounds, which provides useful complementary information for RSC. Specifically, we fine-tune a pretrained text-audio multimodal model using free-text descriptions derived from the sound samples' metadata which includes the gender and age of patients, type of recording devices, and recording location on the patient's body. Our method achieves state-of-the-art performance on the ICBHI dataset, surpassing the previous best result by a notable margin of 1.17%. This result validates the effectiveness of leveraging metadata and respiratory sound samples in enhancing RSC performance. Additionally, we investigate the model performance in the case where metadata is partially unavailable, which may occur in real-world clinical setting.
Abstract:Recent advancements in AI have democratized its deployment as a healthcare assistant. While pretrained models from large-scale visual and audio datasets have demonstrably generalized to this task, surprisingly, no studies have explored pretrained speech models, which, as human-originated sounds, intuitively would share closer resemblance to lung sounds. This paper explores the efficacy of pretrained speech models for respiratory sound classification. We find that there is a characterization gap between speech and lung sound samples, and to bridge this gap, data augmentation is essential. However, the most widely used augmentation technique for audio and speech, SpecAugment, requires 2-dimensional spectrogram format and cannot be applied to models pretrained on speech waveforms. To address this, we propose RepAugment, an input-agnostic representation-level augmentation technique that outperforms SpecAugment, but is also suitable for respiratory sound classification with waveform pretrained models. Experimental results show that our approach outperforms the SpecAugment, demonstrating a substantial improvement in the accuracy of minority disease classes, reaching up to 7.14%.
Abstract:Deep generative models have emerged as a promising approach in the medical image domain to address data scarcity. However, their use for sequential data like respiratory sounds is less explored. In this work, we propose a straightforward approach to augment imbalanced respiratory sound data using an audio diffusion model as a conditional neural vocoder. We also demonstrate a simple yet effective adversarial fine-tuning method to align features between the synthetic and real respiratory sound samples to improve respiratory sound classification performance. Our experimental results on the ICBHI dataset demonstrate that the proposed adversarial fine-tuning is effective, while only using the conventional augmentation method shows performance degradation. Moreover, our method outperforms the baseline by 2.24% on the ICBHI Score and improves the accuracy of the minority classes up to 26.58%. For the supplementary material, we provide the code at https://github.com/kaen2891/adversarial_fine-tuning_using_generated_respiratory_sound.