Abstract:Long training times of deep neural networks are a bottleneck in machine learning research. The major impediment to fast training is the quadratic growth of both memory and compute requirements of dense and convolutional layers with respect to their information bandwidth. Recently, training `a priori' sparse networks has been proposed as a method for allowing layers to retain high information bandwidth, while keeping memory and compute low. However, the choice of which sparse topology should be used in these networks is unclear. In this work, we provide a theoretical foundation for the choice of intra-layer topology. First, we derive a new sparse neural network initialization scheme that allows us to explore the space of very deep sparse networks. Next, we evaluate several topologies and show that seemingly similar topologies can often have a large difference in attainable accuracy. To explain these differences, we develop a data-free heuristic that can evaluate a topology independently from the dataset the network will be trained on. We then derive a set of requirements that make a good topology, and arrive at a single topology that satisfies all of them.
Abstract:Deep Neural Network (DNN) workloads are quickly moving from datacenters onto edge devices, for latency, privacy, or energy reasons. While datacenter networks can be protected using conventional cybersecurity measures, edge neural networks bring a host of new security challenges. Unlike classic IoT applications, edge neural networks are typically very compute and memory intensive, their execution is data-independent, and they are robust to noise and faults. Neural network models may be very expensive to develop, and can potentially reveal information about the private data they were trained on, requiring special care in distribution. The hidden states and outputs of the network can also be used in reconstructing user inputs, potentially violating users' privacy. Furthermore, neural networks are vulnerable to adversarial attacks, which may cause misclassifications and violate the integrity of the output. These properties add challenges when securing edge-deployed DNNs, requiring new considerations, threat models, priorities, and approaches in securely and privately deploying DNNs to the edge. In this work, we cover the landscape of attacks on, and defenses, of neural networks deployed in edge devices and provide a taxonomy of attacks and defenses targeting edge DNNs.
Abstract:The widespread application of artificial neural networks has prompted researchers to experiment with FPGA and customized ASIC designs to speed up their computation. These implementation efforts have generally focused on weight multiplication and signal summation operations, and less on activation functions used in these applications. Yet, efficient hardware implementations of nonlinear activation functions like Exponential Linear Units (ELU), Scaled Exponential Linear Units (SELU), and Hyperbolic Tangent (tanh), are central to designing effective neural network accelerators, since these functions require lots of resources. In this paper, we explore efficient hardware implementations of activation functions using purely combinational circuits, with a focus on two widely used nonlinear activation functions, i.e., SELU and tanh. Our experiments demonstrate that neural networks are generally insensitive to the precision of the activation function. The results also prove that the proposed combinational circuit-based approach is very efficient in terms of speed and area, with negligible accuracy loss on the MNIST, CIFAR-10 and IMAGENET benchmarks. Synopsys Design Compiler synthesis results show that circuit designs for tanh and SELU can save between 3.13-7.69 and 4.45-8:45 area compared to the LUT/memory-based implementations, and can operate at 5.14GHz and 4.52GHz using the 28nm SVT library, respectively. The implementation is available at: https://github.com/ThomasMrY/ActivationFunctionDemo.
Abstract:Fully-connected layers in deep neural networks (DNN) are often the throughput and power bottleneck during training. This is due to their large size and low data reuse. Pruning dense layers can significantly reduce the size of these networks, but this approach can only be applied after training. In this work we propose a novel fully-connected layer that reduces the memory requirements of DNNs without sacrificing accuracy. We replace a dense matrix with products of sparse matrices whose topologies we pick in advance. This allows us to: (1) train significantly smaller networks without a loss in accuracy, and (2) store the network weights without having to store connection indices. We therefore achieve significant training speedups due to the smaller network size, and a reduced amount of computation per epoch. We tested several sparse layer topologies and found that Clos networks perform well due to their high path diversity, shallowness, and high model accuracy. With the ClosNets, we are able to reduce dense layer sizes by as much as an order of magnitude without hurting model accuracy.