Abstract:We introduce a novel framework for learning context-aware runtime monitors for AI-based control ensembles. Machine-learning (ML) controllers are increasingly deployed in (autonomous) cyber-physical systems because of their ability to solve complex decision-making tasks. However, their accuracy can degrade sharply in unfamiliar environments, creating significant safety concerns. Traditional ensemble methods aim to improve robustness by averaging or voting across multiple controllers, yet this often dilutes the specialized strengths that individual controllers exhibit in different operating contexts. We argue that, rather than blending controller outputs, a monitoring framework should identify and exploit these contextual strengths. In this paper, we reformulate the design of safe AI-based control ensembles as a contextual monitoring problem. A monitor continuously observes the system's context and selects the controller best suited to the current conditions. To achieve this, we cast monitor learning as a contextual learning task and draw on techniques from contextual multi-armed bandits. Our approach comes with two key benefits: (1) theoretical safety guarantees during controller selection, and (2) improved utilization of controller diversity. We validate our framework in two simulated autonomous driving scenarios, demonstrating significant improvements in both safety and performance compared to non-contextual baselines.
Abstract:Currently state estimation is very important for the robotics, and the uncertainty representation based Lie group is natural for the state estimation problem. It is necessary to exploit the geometry and kinematic of matrix Lie group sufficiently. Therefore, this note gives a detailed derivation of the recently proposed matrix Lie group $SE_K(3)$ for the first time, our results extend the results in Barfoot \cite{barfoot2017state}. Then we describe the situations where this group is suitable for state representation. We also have developed code based on Matlab framework for quickly implementing and testing.